Programma Dettagliato


Bibliogafia

(Naturalmente, la lista che segue non è esaustiva, nè è da intendersi come una selezione dei "migliori")

Testi di carattere generale sulle leggi di conservazione:

Bressan, Alberto: Hyperbolic systems of conservation laws. The one-dimensional Cauchy problem. Oxford Lecture Series in Mathematics and its Applications, 20. Oxford University Press, Oxford, 2000.

Dafermos, Constantine M.: Hyperbolic conservation laws in continuum physics. Second edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 325. Springer-Verlag, Berlin, 2005.

Serre, Denis: Systems of conservation laws. 1 & 2. Geometric structures, oscillations, and initial-boundary value problems. Translated from the 1996 French original by I. N. Sneddon. Cambridge University Press, Cambridge, 2000.


Altri testi citati durante il corso:

Garavello, Mauro(I-MILB-AM); Piccoli, Benedetto(I-CNR-AC) Traffic flow on networks. Conservation laws models. AIMS Series on Applied Mathematics, 1. American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006. (Traffico su reti).

Haberman, Richard Mathematical models. Mechanical vibrations, population dynamics, and traffic flow. An introduction to applied mathematics. Reprint of the 1977 original. Classics in Applied Mathematics, 21. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1998. (L'ultima parte riguarda il modello LWR).


Alcuni papers significativi:

Storici

Lighthill, M. J.; Whitham, G. B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. Roy. Soc. London. Ser. A. 229 (1955), 317--345.

Payne, H.J.: in G.A. Bekey (Ed.), Simulation Councils Proceedings Series: Mathematical Models of Public Systems, vol. 1(1), 1971.

Richards, Paul I.: Shock waves on the highway. Operations Res. 4 (1956), 42--51.

2×2

Aw, A.; Rascle, M.: Resurrection of "second order" models of traffic flow. SIAM J. Appl. Math. 60 (2000), no. 3, 916--938

Daganzo, Carlos F.: Requiem for second-order fluid approximations of traffic flow. Transportation Research B, 29, 277-286, (1995).

Jean-Patrick Lebacque, Salim Mammar, Habib Haj Salem: Generic second order traffic flow modelling. Proceedings of the 17th ISTTT (International Symposium on Transportation and Traffic Theory). London 2007

n popolazioni

Benzoni-Gavage, Sylvie; Colombo, Rinaldo M.: An n-populations model for traffic flow. European J. Appl. Math. 14 (2003), no. 5, 587--612.

G. C. K. Wong and S. C. Wong: A multi-class traffic flow model - an extension of LWR model with heterogeneous drivers, Transportation Research Part A: Policy and Practice Volume 36, Issue 9, November 2002, 827-841.

Transizioni di Fase nel Traffico

Chalons, Christophe; Goatin, Paola Transport-equilibrium schemes for computing contact discontinuities in traffic flow modeling. Commun. Math. Sci. 5 (2007), no. 3, 533--551.

Colombo, Rinaldo M.: Hyperbolic phase transitions in traffic flow. SIAM J. Appl. Math. 63 (2002), no. 2, 708--721.

Kerner, Boris: Phase transitions in traffic flow, in Traffic and Granular Flow '99, D. Helbing, H. Hermann, M. Schreckenberg, and D. E. Wolf, eds., Springer-Verlag, New York, 2000, pp. 253-283.

Pedoni (macroscopici)

Colombo, Rinaldo M.; Rosini, Massimiliano D.: Pedestrian flows and non-classical shocks. Math. Methods Appl. Sci. 28 (2005), no. 13, 1553--1567.

Chalons, Christophe Numerical approximation of a macroscopic model of pedestrian flows. SIAM J. Sci. Comput. 29 (2007), no. 2, 539--555

Winnie Daamen; Serge P. Hoogendoorn: Flow-Density Relations for Pedestrian Traffic, in Traffic and Granular Flow '05, Editors Andreas Schadschneider, Thorsten Pöschel, Reinhart Kühne, Michael Schreckenberg and Dietrich E. Wolf, 2007

Clements, Richard R.; Hughes, Roger L.: Mathematical modelling of a mediaeval battle: the Battle of Agincourt, 1415. Math. Comput. Simulation 64 (2004), no. 2, 259--269

Hughes, Roger L.: The flow of human crowds. Annual review of fluid mechanics, Vol. 35, 169--182, Annu. Rev. Fluid Mech., 35, Annual Reviews, Palo Alto, CA, 2003.

Altri Modelli / Lavori Sperimentali

C. D'Apice , R. Manzo , B. Piccoli: Modelling supply networks with partial differential equations, preprint.

D'apice, Ciro; Manzo, Rosanna; Piccoli, Benedetto: Packet flow on telecommunication networks. SIAM J. Math. Anal. 38 (2006), no. 3, 717--740

G. Bretti, A. Cutolo, B. Piccoli: Numerical simulations of traffic data on networks via fluid dynamic approach, preprint.

D. Helbing, A. Johansson and H. Z. Al-Abideen: (2007) The Dynamics of Crowd Disasters: An Empirical Study. Physical Review E 75, 046109.

Micro/Macro

Traffic science. Edited by Denos C. Gazis. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.

Daamen,W., P.H.L. Bovy & S.P. Hoogendoorn: Modeling pedestrians in transfer stations in: Pedestrian and Evacuation Dynamics, 2001, Springer Verlag; pp. 59-74

Helbing, Dirk From microscopic to macroscopic traffic models. A perspective look at nonlinear media, 122--139, Lecture Notes in Phys., 503, Springer, Berlin, 1998.