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1 Introduction

In this paper we develop an algorithm to determine the evolution in time of

traffic quantities, such as flux, density and cars’ speed, on single roads and on

networks. We focus on a portion of the urban area in Rome usually subject

to congestion, namely Viale del Muro Torto, for which measured traffic data

are available. We consider the LWR model with Daganzo-Newell flux and our

work consists in the calibration of system parameters in such a way to give a

good reconstruction of traffic behavior. The numerical scheme used is the Go-

dunov scheme and it was first proposed in [3]-[4] for road networks. The basic

idea is to compute approximate flux and density on a single road, assuming as

boundary conditions traffic data measured at the endpoints of it. An estimate

of the validity of this procedure is obtained by comparing solutions produced

numerically and experimental data detected on the road. Measured data are

provided by the municipal society for traffic monitoring and control of Rome,

namely ATAC S.p.A. Traffic is observed through an Intelligent Transport Sys-

tem technology, where each subsystem in it, represented by a sensor placed

along roads of the city, acquires every minute (∆t̃ = 1 is the sensor time unit)

traffic data such as the flux f̃ , the velocity ṽ and the occupation rate õ. Since

each sensor generates a magnetic field, the flux is intended as the number of

cars crossing it per minute, the velocity is the average speed of cars at every

minute, while the occupation rate is given by the time passed by cars on a

sensor, hence it is the time interval in which cars pass through the magnetic

field.

The theory is based on the LWR model applied to networks and was developed

in [6]-[7]-[10], see also [16]-[9]-[13]-[14]. The network models of transportation

systems are assumed to be static in classical approaches, but these models do

not allow a correct simulation of heavily congested urban road networks. For

this reason, traffic engineers have been studying dynamic traffic assignment or

within-day models, thus rendering necessary the use of traffic simulation mod-
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els. Such models, principally created from static network traffic assignments,

can be divided in microscopic, mesoscopic and macroscopic (see [1] and the

references therein). The main problems of the static approach are that it does

not properly reproduce the backward propagation of shocks and the difficulty

of collecting experimental data to test the validity of the models. Many other

ideas have been developed by researchers studying traffic from other perspec-

tives, see for instance [8]-[15]-[10].

In the 1950s James Lighthill and Gerald Whitham, two experts in fluid-

dynamics, and independently P. Richards, [17]-[18], thought that the equa-

tions describing the flow of water could also describe the flow of car traffic.

Fluid-dynamic models for traffic flow seem the most appropriate to detect

some phenomena as shocks formation and propagation on roads, since solu-

tions can develop discontinuities in a finite time even starting from smooth

initial data (see [2]). This nonlinear formulation, based on the conservation of

cars, is given by:

∂tρ + ∂xf(ρ) = 0, (1.1)

where ρ = ρ(t, x) is the car density, with ρ ∈ [0, ρmax], (t, x) ∈ R2 and ρmax is

the maximum car density. The flux f(ρ) is given by ρv, where v is the average

velocity of cars. Assuming v to be a smooth decreasing function of the density

ρ, also f depends only on ρ and its graph is called the fundamental diagram.

We always further assume that f , as function of ρ, is concave.

In more detail, the procedure followed in our simulations consists of the steps:

0. data capturing;

1. data cleaning;

2. calibration of flux parameters;

3. generation of approximate solution;

4. computation of errors.

The main results achieved with the mentioned algorithm are:
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• the calibration of traffic parameter, providing the maximum velocity vmax

very close to measured one ṽmax;

• the description of traffic behavior, namely of flux and density, with a good

approximation.

Focusing on the latter, the percentage error is 11% in the free phase and

19% in the congested phase of traffic. Note that in the congested phase the

percentage error is comparable to error detected by sensors, which is around

20%.

Another important byproduct is the reconstruction of the traffic datas on the

whole network. In particular, this permits to reconstruct the queues evolutions

thus permitting a good estimates of the travelling times.

The papers is organized as follows: Section 2 is devoted to the description of

the mathematical model, while the approximation algorithm is presented in

Section 3. In Section 4 the results obtained for the roads composing the net-

work are showed and a comparison between numerical and measured solutions

is established. Some animations are reported on the web page [5].

2 LWR on networks

A general road network is defined as a finite number of one-way roads modeled

by intervals [ai, bi] that meet at some junctions. In order to describe the evo-

lution in time of traffic we use the LWR model and describe the dynamics at

junctions. A Riemann problem for a scalar conservation law is a Cauchy prob-

lem for an initial data of Heaviside type, that is piecewise constant with only

one discontinuity. Once Riemann problems are solved, a solution to Cauchy

problems can be obtained by wave front tracking, see [2]. Since the flux is

concave, the Riemann solutions are of two types: continuous waves called

rarefactions and traveling discontinuities called shocks. For a junction, a Rie-
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mann problem is a Cauchy problem with an initial data that is constant on

each road. Junctions play a fundamental role, as the system at a junction

is under-determined, even after prescribing the conservation of cars. Due to

finite speed of waves in solutions to (1.1), it is enough assign the dynamics at

each junction separately to obtain an evolution on the whole network.

In order to show the main difficulties arising in the dynamics definition, we

focus on a simple junction with one incoming and one outgoing road and in

particular, we fix the case where the incoming road is occupied by cars with

maximum density, while the outgoing road is empty, see Figure 1.

ROAD 1 ROAD 2

ρ2,0 = 0ρ1,0 = ρmax

Fig. 1. A particular situation in a junction with one incoming and one outgoing

road.

Let us denote the initial datum on road i by ρi,0, i = 1, 2, then:

ρ1,0(x) = ρmax, ρ2,0(x) = 0. (2.2)

Two possible extreme behaviors of cars are expected, namely: all cars flow

towards the outgoing road (entropy solution) or all cars do not pass through

the junction (non-entropy solution). In this way two different solutions ρ and

ρ̃ on the network are determined. Namely:

ρ1(t, x) =





ρmax, if x < f ′(ρmax)t

(f ′)−1
(

x
t

)
, if f ′(ρmax)t < x < 0,

ρ2(t, x) =





(f ′)−1
(

x
t

)
, if 0 ≤ x < f ′(0)t,

0, if x > f ′(0)t,
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while ρ̃1 = ρ1,0, ρ̃2,0 = ρ2.

Hence, the conservation of cars quantity through the junction, which reads as:

∑

incoming roads
incoming fluxes =

∑

outgoing roads
outgoing fluxes ,

holds for both solutions: in other words the solely conservation of cars is

not sufficient to ensure uniqueness. Therefore, a map assigning solutions to

initial data, called a Riemann solver at junctions, is needed. A classification

of possible choices for Riemann solvers, in the above case, have been recently

presented in [11].

For a general junction with n incoming and m outgoing roads, various authors

([7,8,14,16]) used Riemann solvers associated to the following rule:

(A) there exists a traffic distribution matrix A = {αj,i} of coefficients 0 ≤
αj,i ≤ 1 giving the percentage of cars flowing from the i-th incoming road

to the j-th outgoing one and

n+m∑

j=n+1

αj,i = 1, for every i ∈ {1, . . . , n}. (2.3)

First notice that rule (A) implies the conservation of cars through the junction.

In fact, if fi and f j are, respectively, the fluxes on the i-th incoming road and

on the j-th outgoing one, from (2.3) we have:

∑

j

f j =
∑

j

∑

i

αj,i fi =
∑

i

∑

j

αj,i fi =
∑

i

fi.

One may expect that rule (A) is sufficient to describe in a unique fashion the

dynamics at junctions, but it is not the case.

Consider again a junction with one incoming and one outgoing roads and the

initial data (2.2). Both solutions ρ and ρ̃ satisfy rule (A).

To maximize the entropy flux, as for conservation laws, see [2], we fix another
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rule:

(B) The number of cars passing the junction is the maximum possible (re-

specting rule (A)).

In case m ≥ n (and under some generic assumption), rules (A) and (B) ensure

uniqueness of solutions on networks. Moreover, for a single incoming road, it

is easy to check that rule (B) is equivalent to maximize the average velocity.

We recall briefly the procedure for constructing solutions, for further details

see [7]. We use initial data ρi0 on incoming roads (ρj0 on outgoing roads) at

the endpoints interacting with junctions and we determine the new states,

called ρ̂i (ρ̂j on outgoing roads), in such a way that waves emerge out of

junctions. Since this rule leads to a constraint on waves speed (negative on

incoming roads, positive on outgoing roads), it defines a region Ω where we

obtain maximized incoming fluxes γ̂i for i ∈ {1, ..., n}, as prescribed by rule

(B). Let τ : [0, 1] 7→ [0, 1], τ(σ) = σ, be the well-defined map satisfying the

following

τ(ρ) 6= ρ, f(τ(ρ)) = f(ρ),

for each ρ 6= σ. The new states ρ̂i are uniquely determined from γ̂i by inverting

the relation:

f(ρ̂i) = γ̂i, with ρ̂i ∈





{ρi,0}∪]τ(ρi,0), 1], if 0 ≤ ρi,0 ≤ σ,

[σ, 1], if σ ≤ ρi,0 ≤ 1.

(2.4)

Recalling rule (A), maximized outgoing fluxes γ̂j
.
=

n∑
i=1

αjiγ̂i, j = n + 1, ..., n +

m, are derived and the new states ρ̂j are computed analogously.

The weak solution on each road is given by the solution to Riemann problem

with data (ρi0, ρ̂i) for incoming roads and (ρ̂j, ρj0) for outgoing roads and it

can be, respectively, a shock or a rarefaction.
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As the speed of propagation is finite, following [7] we can build a sequence of

solutions to Cauchy problems via a wave front tracking algorithm.

From now on we set ρmax = 1 and the flux function f = vρ is assumed to be:

f(ρ) =





fmax

σ
ρ if 0 ≤ ρ ≤ σ,

fmax

(
ρmax−ρ
ρmax−σ

)
if σ ≤ ρ ≤ ρmax,

(2.5)

where σ is the value of density corresponding to the maximum flux fmax,

see Fig. 2. Such fundamental diagram is usually called Daganzo-Newell flux

0

fmax

1

0 σ ρmax

f(ρ)

ρ

Fig. 2. The flux function.

function. Modelization of the congested phase is complicated, since in this

case the flux assumes a scattering behavior, therefore there are many possible

choices for flux function. Our approach is to use a simple model with reasonable

properties:

1) there are only two characteristic velocities;

2) it is able to reproduce empirical phenomena of backward moving clusters.

3 Description of the approximation algorithm

Our procedure is composed by the following steps:

0. data capturing;
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1. data cleaning;

2. calibration of flux parameters;

3. generation of approximate solution;

4. computation of errors.

Let us give the details.

3.0.1 Step 0: data capturing

Traffic is observed by sensors located along roads. Sensors acquire traffic data,

i.e. the flux, the velocity and the occupation rate, along each road with a

frequency of one minute within an entire day. In the portion of network we

are considering, namely Viale del Muro Torto, described in Section 4, there

are 7 sensors per direction.

3.0.2 Step 1: data cleaning

For each segment, traffic measured data represented by the flux, namely the

number of cars crossing it per minute, the velocity, considered as the average

speed of cars at every minute, and the occupation rate, namely the time in-

terval in which cars exit the magnetic field generated by sensors, are stored

in a file named as the code of the road itself. Due to their structure, such files

cannot be used directly by simulation algorithm, hence we need to apply a

standardization procedure to consent data loading to the program.

Since density is not detected by sensors, we may recover its value on each road

as the ratio between measured flux f̃ i and velocity ṽi:

ρ̃i =
f̃ i

ṽi
, if ṽi 6= 0, for i = 1, . . . , T,

with T the final observation time expressed in minutes. Otherwise, if ṽi = 0, a

selection and cleaning of measured data is done. More precisely, traffic data are
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required to verify the following admissibility conditions. When the velocity is

null a flux different from zero cannot be assumed, hence in this case we exclude

such values. If the flux is null and the occupation rate is also null then the

density is taken equal to zero, otherwise we can assume the density to be

maximal, as displayed in (3.6):

if ṽi = 0 and f̃ i = 0 ⇒





if õi = 0 ⇒ ρ̃i = 0,

if õi 6= 0 ⇒ ρ̃i = ρmax.

(3.6)

Since the most complete data sets are from sensors on road segments 544,

549 and 548, we mainly focused on them and, in this case, the percentage of

excluded data is around 5.6%.

3.0.3 Step 2: calibration of flux parameters

A calibration procedure is applied to each segment of road network. It consists

of a minimization with two parameters, namely fmax and σ, to determine the

analytical expression of flux function (2.5), where the maximum density ρmax

can be theorical, and in this case it is fixed to 333 on the whole network, or

measured and eventually different on each road. The optimized parameters are

computed in the original scale and the maximal speed is consequently derived

as vmax = fmax/σ. Flux parameters obtained by the calibration procedure

determine different flux functions on each road, thus adapting its shape to

their different features.

To measure calibration errors we consider the functional J , given by the sum

of squares of differences between analytical and measured fluxes. Separating
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into free and congested phase, we get:

J =





Jfree =
∑

ρ̃i≤σ

(
fmax

σ
ρ̃i − f̃ i

)2
,

Jcongested =
∑

ρ̃i>σ

(
fmax

(
ρmax−ρ̃i

ρmax−σ

)
− f̃ i

)2
.

(3.7)

3.0.4 Step 3: generation of approximate solution

We produce approximate solutions on the network solving problem (1.1) on

each road. To this aim we make a space-time discretization introducing a

numerical grid in RN × (0, T ), where:

• ∆x is the space grid size;

• ∆t is the time grid size;

• (tl, xm) = (l∆t,m∆x), for l, m varying, respectively on a subset of N and

Z, are the grid points.

For a function v defined on the grid we write vl
m = v(tl, xm) for l = 0, . . . , N

and m = 0, . . . , M , with N the number of iterations in time and M the

number of space steps. We also use the notation ρl
m for ρ(tl, xm) when ρ is the

density on the (t, x) plane. In order to show the approximation procedure, let

us focus on a single segment within the network. Our aim is to reconstruct

the evolution of flux and density in the considered segment by applying the

algorithm based on Godunov scheme and presented in [3].

Let us now briefly describe the algorithm. The initial datum is approximated

by a piecewise constant function; then the corresponding Riemann problems

are solved exactly and a global solution is simply obtained by piecing them

together; finally, one takes the mean and proceeds by induction.
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We take a piecewise constant approximation of the initial datum:

v0
m =

1

∆x

xm+1∫

xm

u0(x)dx, m ≥ 0 (3.8)

and the scheme defines vl
m recursively starting from v0

m. Solutions to Riemann

problems from xm−1/2 are taken and then projected on a piecewise constant

function by

vl+1
m =

1

∆x

xm+1/2∫

xm−1/2

v∆(tl+1, x)dx (3.9)

and vl+1 is computed by the Gauss-Green formula. Under the CFL condition

∆t sup
m,l

{
sup

u∈I(ul
m−1/2,ul

m+1/2
)

|f ′(u)|
}
≤ ∆x, (3.10)

the waves, generated by Riemann solutions, do not influence the solution in

x = xm+1/2, for t ∈ (tl, tl+1). As the flux is time invariant and continuous,

we can put it out of the integral and set gG(u, v) = f(WR(0; u, v)), with

WR

(
x
t
; v−, v+

)
the self-similar solution between v− and v+. Under the condi-

tion (3.10), the scheme can be written as:

vl+1
m = vl

m −
∆t

∆x
(gG(vl

m, vl
m+1)− gG(vl

m−1, v
l
m)). (3.11)

The expression of the numerical flux for Godunov method is given by

gG(u,w) =





minz∈[u,w] f(z) if u ≤ w,

maxz∈[w,u] f(z) if w ≤ u.

Boundary conditions are imposed as follows. At the incoming boundary we

set u(a, t) = ρ1(t), t > 0. We practically proceed by inserting a ghost cell and
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defining the approximate solution at node x0 as:

vl+1
0 = vl

0 −
∆t

∆x
(gG(vl

0, v
l
1)− gG(ul

1, v
l
0)), (3.12)

where ul
1(t) = 1

∆t

∫ tl+1
tl ρ1(t)dt takes the place of vl

−1. An outgoing boundary

can be treated analogously. Let the final endpoint of a road be xN = b. Then

the approximate density expresses as:

vl+1
N = vl

N −
∆t

∆x
(gG(vl

N , ul
2)− gG(vl

N−1, v
l
N)), (3.13)

where ul
2(t) = 1

∆t

∫ tl+1
tl ρ2(t)dt takes the place of vl

N+1, that is a ghost cell value.

Input data of the algorithm provided by previous steps of the procedure are:

1. the optimized parameters fmax, σ and, eventually, ρmax (if the maximal

density is not fixed), to be inserted in the analytical expression (2.5);

2. initial and boundary conditions.

Since the simulation starts during night, we assume an empty configuration

of density and, as boundary conditions, we use measured values of density

detected by sensors located in the initial and final endpoints of the segment,

see Fig. 3. The simulation algorithm produces numerical values of flux and

density along the entire road, therefore we can derive the flux, denoted by

fnum,l, computed at a certain time tl in the point of the road corresponding

to the sensor position.
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INCOMING
BOUNDARYBOUNDARY

OUTGOING

RECONSTRUCTED DENSITY

fnum,l

Fig. 3. Schematization of the approximation procedure on a segment at time tl.

3.0.5 Step 4: computation of errors

Let us introduce the approximation error. To this aim we define f̃max as the

minimal flux value such that 90% of measured fluxes are below it and, at each

time step, we compute errors as the differences between numerical flux fnum

and measured flux f̃ :

E =





Efree =
∑

k1∈Kfree
|fnum,k1 − f̃k1|/f̃max,

Econg =
∑

k2∈Kcong
|fnum,k2 − f̃k2|/f̃max,

(3.14)

where Kfree and Kcong are, respectively, the sets of effective indexes of ad-

missible values of densities in free and in congested part, obtained excluding

densities corresponding to non-admissible fluxes. In particular, we are inter-

ested in the average errors:

Ef = Efree/#Kfree, Ec = Econg/#Kcong.

4 Simulation results

Here we report some results obtained by the application of the algorithm

described in Section 3.

Input data of simulation algorithm, provided by ATAC S.p.A., refer to an area
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of the city of Rome, Viale del Muro Torto, which links the historical center

with the northern area of the city. We consider the path covered moving from

Corso d’Italia towards Piazza del Popolo and we fix within the network a

single segment of length 776 meters, see Fig. 4. Notice that black circles on

the map represent sensors.

In the following Fig. 5 we represent a diagram of measured flux during an

Fig. 4. Viale del Muro Torto.

entire week. The first part of the graph, i.e. up to density ρ ∼ 55, represents

the free phase of traffic, while the second part reproduces the congested phase.

 0

 500

 1000

 1500

 2000
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 3500

 0  50  100  150  200  250  300

F
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Density

FREE

CONGESTED

ρ

Fig. 5. Measured flux-density diagram.
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4.1 Calibration of Fundamental diagrams for road segments

Here we consider all roads composing the network of Viale del Muro Torto.

The fitting procedure, characterized by the steps 0)-1)-2) of the algorithm

described in Section 3, is performed assuming different initial conditions of

flux parameters. A two-parameters constrained optimization is obtained by

the following procedure organized in four steps:

i) in the congested phase we apply a least square method (regression line) and

we call f̄k2 the values approximating f̃k2 ;

ii) setting

Eregr =
∑

k2∈Kcong

(f̄k2 − f̃k2)

the mean square error, we compute the average error:

µ =
Eregr

#Kcong

;

iii) indicating by δ the variance:

δ =

∑
k2∈Kcong

((f̄k2 − f̃k2)2 − µ)

#Kcong

we discard the values of congested flux not satisfying the condition:

(f̄k2 − f̃k2)2 < µ +
√

δ.

iv) taking ρmax as the maximal measured density on each road a constrained

optimization on the screening data is operated to determine σ and fmax.

Simulations are performed starting from different initial values within the

intervals:

10 < σ < 70, 1500 < fmax < 3450. (4.15)

Since the maximum velocity is defined as the ratio fmax/σ, we derive vmax

from the optimized values. Then we compare it to the maximum velocity ṽmax
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computed as the average of maximum speed measured by sensors in the free

phase of traffic.

In Table 1 we report the results of the calibration procedure. From calibra-

tion of data produced by sensor located inside the road, we get optimized

parameters in the original scale:

σ = 38.87, fmax = 2258.52, (4.16)

hence vmax is about 58 km/h. Setting ∆x = 77.6 the examined road is divided

into 10 sub-intervals and the CFL condition ∆t vmax < ∆x (reducing all

quantities to the same scale, e.g. meters per second) reads:

∆t
58000

3600
< 77.6 ⇔ ∆t <

77.6

16.11
⇔ ∆t < 4.81.

Recalling that ∆̃t corresponds to 1 min (60 sec ):

∆t

∆̃t
<

4.81sec

60sec
∼ 0.08.

Assuming ∆t = 1
16

= 0.0625, with time expressed in minutes, the CFL required

by Godunov scheme is respected. In order to impose boundary conditions we

use traffic data provided by sensors on the right and on the left endpoint of

considered segment as, respectively, incoming ρinc
b (road code 548) and outgo-

ing boundary data ρout
b (road code 544), see Fig. 6. The number of iterations

548

549

544

Fig. 6. A road segment in Viale del Muro Torto.

in time of simulation algorithm is N = 16×T , hence we need to fill the gaps in
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Initial values Optimized values

Road code ρmax σ fmax σ fmax vmax ṽmax

544 276 38 2300 37.64705 2063.64395 54.815551 47.35663

544 276 43 2500 38.53337 2110.48027 54.168927 47.35663

544 276 48 2700 37.64705 2060.50058 54.732054 47.35663

548 220 38 2300 45.74509 2451.47698 53.58995 53.00096

548 220 43 2500 45.74497 2451.48191 53.59019 53.00096

548 220 48 2700 45.74507 2451.48745 53.59019 53.00096

549 270 38 2300 38.32250 2227.82598 58.13363 56.82542

549 270 43 2500 39.05808 2313.94563 57.81921 56.82542

549 270 48 2700 38.32198 2227.79486 58.13360 56.82542

556 192 38 2300 26.97233 1919.72807 71.17502 71.17397

556 192 43 2500 26.97230 1919.72505 71.17114 71.17397

556 192 48 2700 25.72385 1763.48061 71.31985 71.17397

600 240 38 2300 54.10050 2847.90330 52.64099 51.70879

600 240 43 2500 54.10109 2847.94053 52.64109 51.70879

600 240 48 2700 53.67810 2791.42491 53.10824 51.70879

Table 1

Two-parameters constrained optimization subject to (4.15) for different initial val-

ues with ρmax the maximum density observed on each segment.

18



the values of densities at the boundaries. This can be done using, for example,

a linear interpolating procedure:

ρnum,l =
(
1− r

16

)
ρ̃l1 +

r

16
ρ̃l1+1, l = 1, . . . , N,

with l1 = [l/16] and r = l − l1. Average error for free and congested phase

are respectively:

Ef = 0.1146, Ec = 0.1957.

Therefore the percentage error is around 11% for free phase and around 19%

for congested phase, thus it is comparable to sensor error which is, in the lat-

ter case, around 20%. The following Figures 7, 8, and 9, show a comparison

between computed and given fluxes. In the mentioned figures we also report

the density values ρ̃, depicted according to the scale on the right side of y-

axis. This was done to have an immediate distinction between the two traffic

phases, namely free phase and the congested phase, for ρ̃ > σ = 38.87.
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Fig. 7. Comparison between fnum and f̃ in the first day, from 0:00 to 6:00 a.m. -

free phase only.
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Fig. 8. Comparison between fnum and f̃ in the first day, from 16:00 to 20:00.

From the analysis of Figures 7 and 8, it can be noticed that the approximate

solution fnum seems to substantially follow the profile of the curve of experi-

mental data, except in some zones where the distance between fnum and f̃ is

quite high. We could consider the curve of approximate solution as a sort of

average of the curve given by measured data. In order follow the behavior of

our approximation more accurately, in Fig. 8 we restrict to the period 18:00-

19:00 and we represent it in Fig. 9.

For sake of completeness we investigated how the frequency with which sensors

collect data affect our approximation. To this aim, we applied the optimization

procedure supposing that data are provided with a lower frequency, i.e. for a

time interval of two minutes and of four minutes. We obtained the following

results:

It can be noticed that a lower frequency in collecting data means an inferior

quantity of informations: ∆̃t = 2 corresponds to half of data, ∆̃t = 4 corre-

sponds to quarter of data. However, from results in Table 4.1, we can observe
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Fig. 9. Comparison between fnum and f̃ in the first day, from 18:00 to 19:00.

∆̃t = 1 ∆̃t = 2 ∆̃t = 4

Ef Ec Ef Ec Ef Ec

0.1146 0.1969 0.1178 0.2025 0.1265 0.2181

Table 2

Two-parameters optimization obtained setting differently the frequency of detecting

data by sensors.

a slight worsening in the approximation: the error in the congested case in-

creases less than one percentage point if ∆̃t = 2 and less than two percentage

points if ∆̃t = 4.

4.2 Data reconstruction

Our algorithm permits to reconstruct the data on the whole road for every

time. Some graphs describing the evolution of the density from 6:00 to 10:00

are reported in Fig. 10. An important consequence is the possibility of com-
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puting and visualizing the queues forming at the end of the road and moving

backwards. Using only the data from sensors, we can only determine if the

queue reached one sensor or did not. Since sensors are places every 400 meters

(more or less), the average exptected error for the queue length can be of 200

meters. This in turn may give rise to big errors in the estimation of the trav-

elling time (usually communicated to drivers through panels at the entering

of the road).

On the contrary our algorithm permits to reconstruct the queue end position

at every time, with a low error, thus giving good travelling time estimates.

Related animations are reported on the web page [5].
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Fig. 10. Reconstruction of the density on the segment between 6:00 and 10:00.
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5 Conclusions

Focusing on the comparison between vmax and ṽmax, we want to point out

that the measured velocity values are approached by the approximate velocity

values on all roads of the network except on road 544. This is explained by a

known inefficiency of the sensor located on road 544.

References

[1] V. Astarita, Node and Link Models for Network Traffic Flow Simulation,

Mathematical and Computer Modelling, 35 (2002), pp. 643-656.

[2] A. Bressan, Hyperbolic Systems of Conservation Laws - The One-dimensional

Cauchy Problem, Oxford Univ. Press, 2000.

[3] G. Bretti, R. Natalini and B. Piccoli, Numerical Approximations of a Traffic

Flow Model on Networks, Networks and Heterogeneous Media, 1 (2006), no. 1,

57-84.

[4] G. Bretti, R. Natalini and B. Piccoli, Fast Algorithms for the Approximation of

a Traffic Flow Model on Networks, Discrete and Continuous Dynamical Systems

- Series B, vol. 6 (2006), pp. 427-448.

[5] G. Bretti and B. Piccoli,

http://www.iac.rm.cnr.it/∼bretti/TrafficNumericalSolutions.html .

[6] Y. Chitour and B. Piccoli, Traffic circles and timing of traffic lights for cars

flow, Discrete and Continuous Dynamical Systems-Series B, 5 (2005), no. 3,

599-630.

[7] G.M. Coclite, M. Garavello and B. Piccoli, Traffic Flow on a Road Network,

Siam Math. Anal., 36 (2005), no. 6, 1862-1886.

23



[8] C. F. Daganzo, Fundamental of Transportation and Traffic Operations, Elsevier,

New York, (1997).

[9] C. F. Daganzo, On the variational theory of traffic flow: well-posedness, duality

and applications, Networks and Heterogeneous Media, 1 (2006), no. 4, 601-619.

[10] M. Garavello and B. Piccoli, Traffic Flow on Networks, AIMS Series on Applied

Mathematics (2006).

[11] M. Garavello, R. Natalini, B. Piccoli and A. Terracina, Conservation laws with

discontinuous flux, Networks and Heterogeneous Media, 1 (2007), no. 2, 159-

179.

[12] B. D. Greenshields, A study in Highway capacity, Highway Research board

Proceedings, 14 (1935), pp. 448-477.

[13] D. Helbing, S. Lämmer, and J. P. Lebacque, Self-organized control of irregular

or perturbed network traffic, 239-274 in: C. Deissenberg and R. F. Hartl (eds.)

Optimal Control and Dynamic Games, Springer, Dordrecht, 2005.

[14] D. Helbing, J. Siegmeier, and S. Lämmer Self-organized network flows, Networks

and Heterogeneous Media, vol.2 (2007),pp. 193-210 .

[15] R. Herman and I. Prigogine, A two-fluid approach to town traffic, Science, 204

4389 (1979), 148-151.

[16] J. P. Lebacque, M. M. Khoshyaran, Modelling vehicular traffic flow on networks

using macroscopic models, in Finite volumes for complex applications II, pp. 551–

558, Hermes Sci. Publ., Paris, 1999.

[17] M. J. Lighthill and G. B. Whitham, On kinetic waves. II. Theory of Traffic

Flows on Long Crowded Roads, Proc. Roy. Soc. London Ser. A, 229 (1955),

317-345.

[18] P. I. Richards, Shock Waves on the Highway, Oper. Res., 4 (1956), 42-51.

24


