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Disclaimer

These pages originate as a follow up to the course Conservation Laws delivered by the
author at the University of Warsaw in the week 12-16.05.2014. Clearly, not all the theory
of Conservation Laws is considered, several subjects are only superficially covered, while
others are entirely omitted and the space devoted to the various research directions is
not related to their relevance. Unfortunately, these choices reflect the author’s limited
knowledge, rather than his interests.

1 Text Books

The theory of Conservation Laws currently consists in the theory of 1D systems and in
that of multiD scalar equations. A beautiful text comprising both is [146]. Here, several
historical notes allow the reader to understand how the whole subject developed, keeping
Euler equations as the guiding paradigm (non standard applications to, e.g., crowd dynamics
or traffic flow are marginally considered). Moreover, a very complete bibliography helps
finding all details not contained in this very clear exposition.

The monograph [58] is devoted to 1D systems. The uniqueness of solutions and their
Lipschitz continuous dependence from the initial datum are presented in detail. The presence
of exercises, the detailed explanations and the gentle introduction that covers also semilinear
and quasilinear systems allow to use this text as a reference for a PhD course.

The two volumes [233] also deal with both multiD equations and 1D systems, although
some results on the well posedness of the latter are not present. A variety of techniques is
presented (Glimm scheme, compensated compactness, . . .) and detailed references are given
for those proofs that are not presented.

Peculiar to [209] is the thorough treatment of nonclassical shocks. Here, the proof of
stability is obtained through a procedure different from that in [58].

The Wave Front Tracking approximation technique is the subject of the monograph [192],
that also describes a 2D version. A text presenting numerical methods as well as theoretical
results is [171], while [211] is entirely devoted to numerical methods. The monograph [219] is
a very precise, mostly self contained and rigorous introduction to measure valued equations.

Prior to the breakthroughs that characterized the development of conservation laws after
1995, for several years the (first editions of the) books [230, 236] have played a very relevant
role and were a main reference for this subject.
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Other textbooks devoted to specific applications are [162], devoted to networks, and [228],
devoted to crowd dynamics.

2 General Theory – 1D Systems

A good starting point on the general theory of conservation laws is the work [225] by Riemann.
A century later came the solution to the Riemann problem by Lax [204], which opened the
way the global in time existence of solutions in BV by Glimm [166]. An extension to the
case of 2 equations with initial data in L∞ was obtained in [167]. This result was slightly
improved and its proof deeply simplified in [47].

The well posedness, i.e. the L1-Lipschitz continuous dependence from the initial datum,
for 2× 2 systems is proved in [61] by means of wave front tracking, in the n× n case in [64]
using piecewise Lipschitz approximations. This latter proof was significantly simplified using
wave front tracking and the Liu-Yang functional [71, 216, 217, 218], see also [25, 32, 48,
110, 196, 210]. Preliminar results that eventually lead to this breakthrough where [54, 56],
apparently contradicting [238].

Remarkably, various results on the uniqueness of solutons and on their characterizations
were obtained after continuous dependence was proved, often relying on the existence of the
semigroup, see for instance [62, 65, 68, 70].

The stability of solutions can be understood in various senses. Their L1-Lipschitz continu-
ous dependence from the flow is proved in [46]. A definition of structural stability is presented
in [69].

Most of the results above are obtained under the assumption that each characteristic field
be either linearly degenerate or genuinely nonlinear. This requirement is proved to be not
necessary in the series of papers [23, 22, 24, 48, 196].

The above results are typically obtained through the definition of a sequence of approx-
imate solutions. The exact solution is then proved to inherit properties of the approximate
ones. Three widely used techniques to define approximate solutions are Glimm Scheme, Wave
Front Tracking and Vanishing Viscosity.

Glimm Scheme: In its original form, presented in [166], it relies on a random choice and
leads to probabilistic arguments. A deterministic version is presented in [214]. The
uniqueness of the limit was proved only several years later in [57].

Wave Front Tracking: It originated in [142], was extended to n × n systems in [55, 226],
is the central subject of the monograph [192] and of the lecture notes [59, 84]. A
simplification is described in [34].

Vanishing Viscosity: The convergence of vanishing viscosity approximations has been a
long standing question, finally closed in [45]. Remarkably, these approximations do not
even require the system to be in conservative form. A rate of convergence for these
approximations is obtained in [67].

Among the many qualitative properties of the solutions, decay estimates originated in [222]
have been widely considered for their relevance in characterizing solutions, see [63, 72, 79,
165, 169, 210, 213].

Invariant regions are characterized in [189], see also [156, 157] for a numerical viewpoint.
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A very effective tool in the qualitative analysis of solution is provided by generalized
characteristics, originated in [143, 144], see also [147, 148].

The so called Temple systems [237] have a geometric structure that make them an optimal
example, of interest also on their own. They have been and still are widely considered, see
for instance [20, 106, 33, 41, 44, 66, 184].

A collection of open problems (at the time of the writing) is in [60].

Balance Laws Following [149], approximate solutions to the system of balance law ∂tu +
∂xf(u) = g(t, x, u) are typically constructed through the operator splitting or fractional step
algorithm. It consists of the alternate use of approximate solutions to ∂tu+ ∂xf(u) = 0 with
(approximate) solutions to the ordinary differential equation ∂tu = g(t, x, u). The develop-
ment of this theory closely followed that of conservation laws, with existence of solutions
being proved first in the 2× 2 case in [140], then the n× n case and the Lipschitz continuous
dependence from the data followed, see [8, 9, 10].

Further extensions are presented in [88, 108, 109, 113, 132, 133, 145, 170, 174]. General
treatments of the nonlinear operator splitting algorithm in metric spaces are in [89, 111, 112].

Initial – Boundary Value Problems Assigning an initial datum and a boundary datum
to a conservation law may well lead to an over-determined problem. The presence of a jump
discontinuity between the boundary datum and the trace of the solution at the boundary puts
under question the very sense under which the boundary data has to be understood. Depend-
ing on the specific application at hand, different definitions of solution can be preferable.

A general, entirely intrinsic definition of solution is proposed in [153, 172]. A well posed-
ness theory developed along this line is found in [3, 4, 5, 106, 113, 132, 133, 152].

The vanishing viscosity approach yields a different theory, initiated in [18, 19] with arti-
ficial viscosity and then with real viscosity in [49], see also [77, 78].

3 General Theory – MultiD Scalar

Existence, uniqueness and L1-Lipschitz continuous dependence from the initial datum are
proved in the classical paper [200] using the vanishing viscosity approach and the doubling of
variables. A key role is played by the definition of solution. The same techniques are extended
to the case with boundary in [37]. The stability of solution with respect to flow and source
was proved more recently in [127, 128, 206, 207]. Differently from the usual habit in the
case of 1D systems, these results all deal with the general case ∂tu+divf(t, x, u) = g(t, x, u),
i.e., with fluxes and sources depending on (t, x, u). Usually, this makes all statements rather
intricate, since the regularity requirements on the dependence from t, x and u may well differ.
Improvements of Kružkov result are, for instance, in [53].

4 Applications

4.1 Continuum Thermomechanics

The applications to Continuum Thermomechanics have been the paradigm that drove the
evolution of the theory of Conservation Laws. Here, we only record the following research
directions.
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Phase Transitions: The idea underlining most of these works is that a phase boundary is
nothing but an evolving free discontinuity between two different fluids. Since in Conservation
Laws we know how to deal with discontinuities, we are also able to deal with phase transitions.
Detonations, deflagrations and chemical reactions are treated similarly. It is difficult to draw
a boundary separating the more mathematical works from the more physical ones: [1, 2, 6,
7, 27, 28, 75, 86, 87, 130, 136, 137, 138, 155, 183, 208, 234, 235].

Pipes, Junctions and Networks: Two pipes connected by a junction (or a kink) essen-
tially originate an initial boundary value problem for a system of conservation laws where the
two components related to the two pipes are coupled only through the junction. The physics
of the junction lead to select the solution to the Riemann Problem at the junction and, hence,
to the full analytic theory. This research direction initiated with [191], Irrigation canals can
be treated similarly. See [35, 36, 51, 52, 93, 94, 95, 115, 119, 120, 121, 122, 125, 175, 215].

Granular Flows: Two models have been widely considered in the literature: the Hadeler–
Kuttler one [182] and the Savage–Hutter one [231, 232]. More recently, new models were
proposed, leading to new analytic problems: [11, 12, 13, 14, 15, 16, 17, 73, 116, 117, 176, 177,
178, 179, 180]. Related to these works, a description of the cutting of steel by means of a
laser beam was recently proposed in [114].

4.2 Vehicular Traffic and Crowd Dynamics

These applications have been considered more recently. Besides the obvious conservation of
the total amount of vehicles/individuals, they lack the presence of other well established basic
principles. This is partly due to their rather young history and partly to the possible non
existence of such principles.

Vehicular Traffic: A basic textbook, not specifically related to conservation laws, is [151].
The third part of the classic [181] is a gentle introduction to traffic modeling. The more
recent [228] relies on conservation laws.

The most famous macroscopic model was presented in the famous works [212, 224]. A
further classical reference is [221].

Also in vehicular traffic, 1995 has a particular role. Due to Daganzo’s [150], the models
proposed after that year have to cope with the deep criticism by Daganzo. A first reaction
lead to the celebrated model [30, 241], with a lot of follow ups [29, 160, 168, 173]. Then
various multiphase models also arose, as in [83] and [50, 75, 85, 99, 101, 124].

Traffic modeling naturally leads to several new analytic problems, such as optimal manage-
ment [21, 102, 104, 105, 107]; coupling of different models [123, 163, 164, 202, 203]; nonlocal
models [91, 118]; generalized models [31, 205]; multi-population models [42, 43, 240, 242];
multi-lane models [90, 193, 198, 199]; ad hoc numerical algorithms [75, 76]; see also [81, 82,
135, 187, 197, 201, 220, 229] and the reviews [39, 186].

A very quickly developing research direction is related to junctions and networks, orig-
inated in [190]. A good starting point is the monograph [162], whereas related papers
are [26, 96, 100, 158, 159, 161].



R.M. Colombo 5

Crowd Dynamics: This is an even newer research direction. Among the first papers
devoted to the use of conservation laws in the modeling of crowd movements are [194, 195],
see also [154], and the unusual [80]. The monograph [228] provides an introduction to 1D
models, refer also to the special issue [129], to the review [39] and to the rather applied [239].
Nonclassical shocks were used in [131, 134, 227], which are in agreement with the experimental
study [188], and in [103]; moreover, ad hoc numerical methods were developed [74]. Nonlocal
equations seem particularly successful, see [92, 97, 98, 126, 141] also in the case of measure
valued equations [223]. For other approaches, see [38, 40, 139, 185].

5 All the Rest

A sample of the subjects not covered above is the following: Numerical methods; Trans-
port equations with low regularity; Non-uniqueness of solutions to multiD systems; Stability
of shocks/rarefactions/contact discontinuities; Applications to structured population models;
Kinetic formulations; Properties of viscous approximations; Systems with large data; Appli-
cations to general relativity; Nonclassical shocks; Compensated compactness methods; Regu-
larity of solutions; Asymptotic decay estimates; Singular limits of parabolic approximations;
Discontinuous fluxes; Control problems; . . .
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[219] J. Málek, J. Nečas, M. Rokyta, and M. Růžička. Weak and measure-valued solutions to
evolutionary PDEs, volume 13 of Applied Mathematics and Mathematical Computation.
Chapman & Hall, London, 1996.

[220] F. Marcellini. Free-congested and micro-macro descriptions of traffic flow. Discrete
Contin. Dyn. Syst. Ser. S, 7(3):543–556, 2014.

[221] G. Newell. A simplified theory of kinematic waves in highway traffic, part II. Transpn.
Res.–B, 27B(4):289–303, 1993.
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