Analisi Matematica – Ingegneria Informatica Facoltà di Ingegneria, Brescia, A.A. 22/23 - Scritto n. 6

Matricola:								
Cognome:				Nom	ıe:			
	Domanda:	1	2	3	4	5	6	
	Risposta:							

Per ognuna delle 6 domande sono suggerite 4 risposte, una sola esatta. 4 risposte esatte assicurano la sufficienza.

- **1.** Sia $\varphi: I \to \mathbf{R}$ la soluzione massimale del problema di Cauchy $\begin{cases} \dot{x} = 1/\left(t\sqrt[3]{\ln^2 t}\right) \\ x(e) = 3 \end{cases}$. Allora
- 1.A Nessuna delle altre affermazioni è esatta.

 φ ha un asintoto orizzontale a $+\infty$

- **2.** Sia (X,d) uno spazio metrico e sia $f:X\to X$ una funzione. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - Se f è Lipschitz, allora $f \circ f$ è Lipschitz.
 - Se f è una contrazione ed è invertibile, allora l'inversa f^{-1} è una contrazione.
- 2.A Entrambe

Solo la seconda 2.B

2.C Nessuna delle altre affermazioni è esatta.

Solo la prima 2.D

3. Dati
$$\alpha \in \mathbf{R}$$
 $e \ \beta \in [0, +\infty[$, $sia \ f: \mathbf{R}^2 \to \mathbf{R}$ data da $f(x, y) = \begin{cases} \frac{\alpha x^2 - 4 |xy|^{\beta} + \alpha y^2}{x^2 + y^2} & se \ (x, y) \neq (0, 0) \\ \alpha & altrimenti. \end{cases}$

Ovale/i delle sequenti affermazioni è/sono certamente vera/e?

Quale/i delle sequenti affermazioni è/sono certamente vera/e?

(1)
$$f \ \hat{e} \ differenziabile \ in (0,0) \iff \beta > 3/2.$$

(2) $f \ \hat{e} \ continua \ in (0,0) \iff \beta \geq 1.$

3.A Entrambe.

Solo la prima. 3.B

3.C Nessuna delle altre affermazioni è esatta.

- Solo la seconda.
- **4.** Sia \mathcal{P} la parabola con asse parallelo all'asse x, vertice V(1,0) e passante per A(2,1). Sia \mathcal{T} la regione limitata di piano compresa tra \mathcal{P} e la retta di equazione x=2. Allora

$$\int \int_{\mathcal{T}} \left(xy^2 + e^x y^3 + x^4 \sin y \right) \, dx \, dy =$$

4.A 3/7

Nessuna delle altre affermazioni è esatta. $\mathbf{4.B}$

4.C 16/35

6/7 **4.D**

- 5. Sia $x = \varphi(t)$ la soluzione massimale di $\begin{cases} \dot{x} = \sec t + t \sec(6x) \\ x(0) = 0 \end{cases}$. Allora necessariamente
- **5.A** $\ddot{\varphi}(0) = 0$

Nessuna delle altre affermazioni è esatta. 5.B

5.C $\ddot{\varphi}(0) = 6$

 $\ddot{\varphi}(0) = 1$ **5.D**

- **6.** Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x,y) = \arctan(2\ln(x^2+1) + 3\sin^2 y)$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) f ammette infiniti punti di minimo assoluto.
 - (2) f ammette infiniti punti di sella.

6.A Entrambe.

Solo la prima. 6.B

6.C Solo la seconda.

Nessuna delle altre affermazioni è esatta. 6.D

Analisi Matematica – Ingegneria Informatica Facoltà di Ingegneria, Brescia, A.A. 22/23 - Scritto n. 6

Risposte esatte:

1 2 3 4 5 6

Compito A: B D B C D A