Analisi Matematica 2 - Ingegneria Elettronica e delle Telecomunicazioni Facoltà di Ingegneria, Brescia, A.A. 20/21 - Scritto n. 7

	0 0	,	,		,				
Matricola:									
Cognome:			N	ome:					
Domanda:	1 2	3	4	5	6	7	8	9	
Risposta:									
Per ognuna delle 9 doman	de sono sugger	rite 4 rispost	te, una sol	la esatta.	5 rispos	te esatte	assicurar	no la sufficie	enza.
1. Sia T la regione di R da $f(x,y) = \sqrt{(x+9)^2 + }$	$\frac{2 \ delimit}{(y-9)^2}. \ Qua$	al triangolo le/i delle seg	di vertici guenti affe	(-9,0), (maximal)	$(9,0), (0, \frac{\dot{e}}{sono})$	9) e sia j certamen	$f: T \to \mathbf{R}$ te $vera/e$	la funzion	e data
	(2) f ϵ	(1) f ammette un	(T) = [9/m] $unico pun$			oluto.			
1.A Nessuna delle altre 1.C Solo la seconda.	affermazioni è	esatta.						Entrambe.	

- 2. Si consideri la serie di potenze $\sum_{n=1}^{+\infty} \frac{1}{n\sqrt{n}} \left(1 + \frac{1}{3n}\right)^{n^2} (z-3)^n$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - Il raggio di convergenza è $\exp(-1/3)$.
 - (2)Vista come funzione reale di variabile reale, ha come somma una funzione non derivabile in x=3.
- 2.A Entrambe.

Solo la prima. 2.B

2.C Solo la seconda.

- Nessuna delle altre affermazioni è esatta. 2.D
- **3.** Siano $\mathcal{D} = \left\{ (x,y) \in \mathbf{R}^2 : \frac{x^2}{4} + \frac{y^2}{9} \le 1 \right\}$ $e \ f: \mathcal{D} \to \mathbf{R}$ data da $f(x,y) = (1+y) \left(\frac{x^2}{4} + \frac{y^2}{9} \right)^{10}$. Allora, si ha $\iint_{\mathcal{D}} f(x,y) dx \, dy =$
- **3.A** $\pi/2$

Nessuna delle altre affermazioni è esatta. 3.B

3.C $3\pi/7$

- $6\pi/11$ 3.D
- **4.** Si consideri il Problema di Cauchy $\begin{cases} y'' = (y')^3 \\ y(0) = 5 \end{cases}$ Quale/i delle seguenti affermazioni è/sono certamente vera/e? y'(0) = 1.
 - Ammette una soluzione massimale $\varphi: I \to \mathbf{R}$, con $I \subseteq \mathbf{R}$, tale che $\lim_{x \to -\infty} \varphi(x) = -\infty$. (1)
 - Può essere riscritto in modo da soddisfare alle ipotesi del Teorema di Cauchy Globale.

4.A Entrambe.

Solo la prima. 4.B

4.C Solo la seconda.

Nessuna delle altre affermazioni è esatta.

5. Sia (X,d) uno spazio metrico, sia $A \subseteq X$ non vuoto e sia $x: \mathbb{N} \to A$ una successione convergente ad un punto x_{∞} in X. È allora necessariamente vero che:

5.A $x_{\infty} \in \overline{A}$

 $x_{\infty} \in \partial A$ 5.B

5.C x_{∞} è di accumulazione per A.

Nessuna delle altre affermazioni è esatta. 5.D

- **6.** Al variare di $n \in \mathbb{N} \setminus \{0\}$, sia $f_n: \mathbb{R} \to \mathbb{R}$ data da $f_n(x) = (-1)^n \exp\left(-\frac{x^2+1}{n^3}\right) \chi_{[n-1,n]}(x)$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) f_n converge uniformemente su ogni sottoinsieme chiuso di \mathbf{R} .
 - (2) f_n converge puntualemte su \mathbf{R} .

6.A Solo la prima.

Entrambe. 6.B

6.C Nessuna delle altre affermazioni è esatta.

Solo la seconda. 6.1

- 7. Al variare di $a \in \mathbb{R}$, sia $f_a(x,y) = x + x^2y + ay + e^{xy} 1 + \operatorname{sen}(xy)$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) $\forall a \in \mathbf{R}, f_a(x, y) = 0$ grazie al Teorema della Funzione Implicita definisce $y = \varphi(x)$ in un intorno di (0, 0). (2) Se a = 1/2 e $y = \varphi(x)$ è definita da $f_{1/2}(x, y) = 0$, si ha $\varphi'(0) = -2$.
- **7.A** Solo la seconda.

Entrambe. 7.B

7.C Solo la prima.

Nessuna delle altre affermazioni è esatta.

- 8. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x,y) = (4x^2 y^2)e^{x-2y}$ ogniqualvolta y > 2|x| ed f(x,y) = 0 altrimenti. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) f è continua negli stessi punti in cui è differenziabile.
 - (2) Se y = 2|x|, f non è differenziabile in (x, y).

8.A Solo la prima.

Entrambe. 8.B

8.C Nessuna delle altre affermazioni è esatta.

Solo la seconda. 8.D

- 9. Sia $f: \mathbf{R} \to \mathbf{R}$ tale che il Problema di Cauchy $\begin{cases} \dot{x} = f(x) \\ x(\sqrt{2}) = 0 \end{cases}$ ammetta almeno 2 soluzioni distinte definite su \mathbf{R} . Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) f non è continua su \mathbf{R} .
 - (2) f è strettamente positiva su \mathbf{R} .

9.A solo la prima.

Entrambe. 9.B

9.C Solo la seconda.

Nessuna delle altre affermazioni è esatta. 9.D

A.A. 20/21 - Scritto n. 7

A.1

Analisi Matematica 2 - Ingegneria Elettronica e delle Telecomunicazioni Facoltà di Ingegneria, Brescia, A.A. 20/21 - Scritto n. 7

Risposte esatte:

1 2 3 4 5 6 7 8 9 0

Compito A: B B D B A D A C D