Analisi Matematica 2 - Ingegneria Elettronica e delle Telecomunicazioni

Fä	acoita di	ingeg	gneria	ı, Bre	escia,	A.A.	20/21	SC	ritto	n. 6	
Matricola	J:										
Cognome	:				N	ome:					
Do	manda:	1	2	3	4	5	6	7	8	9	
Ri	sposta:										
Per ognuna d	elle 9 domano	de sono su	iggerite 4	ł risposte	e, una sol	a esatta.	5 rispost	e esatte	assicura	no la suffic	cienza.
1.B f contr 1.C f conti	(x,d) uno spaza a delle altre a azione su $X \in A$ nua su $X \in A$ azione su $X \in A$	affermazio g Lipschitz	oni è esat uitz su X su $X \Rightarrow$	$ \begin{array}{c} \text{ta.} \\ \Rightarrow f \circ g \\ f \circ g \text{ Li} \end{array} $	contrazio	one su X .		guenti af	fermazio	oni è vera?	
2. Siano T chio di centre	il triangolo $(0,0)$ e ragg	di vertici gio 1. Si	(0,1), (a inoltre	0, -1), ($(-3,0)$ e \rightarrow \mathbf{R} $data$	D l'inte da $f(x, y)$	$rsezione \\ y) = \begin{cases} y \\ 2 \end{cases}$	$tra il pr$ $3 \cosh x - x \sqrt{ y }$	rimo quo + xy y	$\begin{array}{c} adrante & ed \\ se & x \le 0 \\ se & x > 0. \end{array}$	il cer-

2.C 3/8 **3.** Sia $f: A \to \mathbf{R}$, con $A = \left\{ (x,y) \in \mathbf{R}^2 : \left| x \, y^2 \right| \le 1 \right\}$ definita da $f(x,y) = \frac{\arcsin(x \, y^2)}{3x^2 + 2y^2}$ se $(x,y) \in A \setminus \{(0,0)\}$ e

Nessuna delle altre affermazioni è esatta.

(1)f è differenziabile su A.

f(0,0) = 0. Quale/i delle seguenti affermazioni è/sono certamente vera/e?

(2)f ammette entrambe le derivate parziali in (0,0).

3.A Entrambe. Nessuna delle altre affermazioni è esatta. Solo la seconda. 3.CSolo la prima.

4. Sia $f: \mathbf{R} \to \mathbf{R}$ la funzione 2π -periodica che in $x \in]-\pi/2, \pi/2[$ assume il valore $f(x) = \sqrt{2}|x|$ mentre per $|x| \in [\pi/2, \pi]$ vale f(x) = 0. Detti a_n, b_n i suoi coefficienti di Fourier, si ha $b_1 + a_2 + b_3 = 0$ **4.A** $\sqrt{2}/\pi^2$ Nessuna delle altre affermazioni è esatta. ${\bf 4.B}$

4.C $(\pi + 1)/2$ $-\sqrt{2}/\pi$ **4.D**

5. Siano $\alpha \in \mathbf{R}$ e $\varphi: I \to \mathbf{R}$ la soluzione massimale del Problema di Cauchy $\begin{cases} \dot{x} = \arctan x \\ x(0) = \alpha. \end{cases}$ Quale/i delle seguenti affermazioni è/sono certamente vera/e?

 $\alpha < 0 \Rightarrow \varphi$ è inferiormente limitata.

 $\alpha > 0 \Rightarrow I = \mathbf{R} \ e \ \varphi \ \dot{e} \ convessa \ su \ \mathbf{R}.$

 $\iint_{T \cup D} f(x, y) dx \, dy =$

2.A 24/7

- **5.A** Nessuna delle altre affermazioni è esatta.
- 5.C Solo la prima.

Solo la seconda. 5.B

Entrambe. 5.D

- **6.** Sia $f \in \mathbf{C^2}(\mathbf{R}^2; \mathbf{R})$ soddisfacente alle ipotesi del Teorema della Funzione Implicita in un intorno di (0,1) e sia $y = \varphi(x)$ la funzione così definita in un intorno di (0,1). Si ha inoltre che $\partial_y f(x,y) = 3x \ln(1+x^2+y^2) + y e^x(2xy^5+2\cos(x^2y))$ e che $\lim_{x\to 0} \frac{\varphi(x)-1}{x} = 1$. Allora:
- **6.A** $\partial_x f(0,1) = 4$

Nessuna delle altre affermazioni è esatta. **6.B**

6.C $\partial_x f(0,1) = -2$

 $\partial_x f(0,1) = -1$ **6.D**

- 7. Sia $f: \mathbf{R}^2 \to \mathbf{R}$ data da $f(x,y) = \left(e^{(x-1)^2} 1\right)^2 \ln(1+y^2) + x^2 2x + 9$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) f ammette una circonferenza costituita da punti stazionari.
 - (2) f ammette (almeno) un punto di massimo assoluto.
- 7.A Solo la seconda.

Nessuna delle altre affermazioni è esatta. 7.I

7.C Entrambe.

Solo la prima. 7.D

- 8. Al variare di $n \in \mathbb{N} \setminus \{0\}$, sia $f_n: [0, +\infty[\to \mathbb{R} \ data \ da \ f_n(x) = 2 n \operatorname{sen}\left(\frac{x \arctan x \ln(x^2 + 2)}{n^2}\right)$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) f_n converge uniformemente su $[0, e^{100}]$.
 - (2) Il limite puntuale delle f_n è una funzione continua ovunque è definita.
- 8.A Nessuna delle altre affermazioni è esatta.

Entrambe. 8.B

8.C Solo la seconda.

Solo la prima. 8.D

- 9. Sia $\varphi: I \to \mathbf{R}$ la soluzione massimale di $\begin{cases} y' = \frac{8x}{1+4x^2}y + 4x^2 + 1 & \text{Quale delle seguenti affermazioni è vera?} \\ y(0) = 0. \end{cases}$
- 9.A Nessuna delle altre affermazioni è esatta.

 $\varphi(1) = 4 \text{ e } \lim_{x \to -\infty} \varphi(x) = +\infty.$ 9.B

9.C φ ammette (almeno) un asintoto.

 φ è una funzione dispari illimitata. **9.D**

Analisi Matematica 2 - Ingegneria Elettronica e delle Telecomunicazioni Facoltà di Ingegneria, Brescia, A.A. 20/21 - Scritto n. 6

Risposte esatte:

1 2 3 4 5 6 7 8 9 0

Compito A: A D D D B C B B D