Analisi Matematica 2 - Ingegneria Elettronica e delle Telecomunicazioni Facoltà di Ingegneria, Brescia, A.A. 14/15 - Scritto n. 1

Matricola:									
Cognome:					Nom	.e:			
I	Domanda:	1	2	3	4	5	6	7	8
]	Risposta:								
Dar agnuna dal	le 8 domande so	no sugge	rito 1 rig	nosto un	e cole oc	atta 5 ri	anosto os	entto aggi	aurono lo cu

Per ognuna delle 8 domande sono suggerite 4 risposte, una sola esatta. 5 risposte esatte assicurano la sufficienza.

1. Sia $f: \mathbf{R} \to \mathbf{R}$ la funzione 2π -periodica definita da f(x) = x |x| per $x \in]-\pi,\pi]$. Siano $a_0,a_1,\ldots,a_k\ldots$ $b_1, b_2, \dots, b_k, \dots$ i suoi coefficienti di Fourier. Quale/i delle seguenti affermazioni è/sono certamente vera/e?

$$(1) \qquad b_3 - a_3 = \frac{18\pi^2 - 8}{27\pi}$$

La serie di Fourier di f converge puntualmente a f. (2)

1.A Entrambe.

Solo la prima. 1.B

1.C Solo la seconda.

Nessuna delle altre affermazioni è esatta 1.D

2. Siano (X,d) uno spazio metrico, A un sottoinsieme di X ed $f:X\to X$ una funzione continua su X. Sia B = f(A). Quale/i delle seguenti affermazioni è/sono certamente vera/e?

(1)
$$\mathring{B} = f(\mathring{A}).$$

(2) $\overline{B} = f(\overline{A}).$

$$(2) \overline{B} = f(\overline{A}).$$

2.A Entrambe.

Nessuna delle altre affermazioni è esatta 2.B

2.C Solo la seconda.

Solo la prima.

3. Si consideri il problema
$$\begin{cases} y''-y'-2y=e^{-2x}\\ y(0)=0 & \text{. Quale/i delle seguenti affermazioni è/sono certamente vera/e?}\\ \lim_{x\to+\infty}y(x)=0 \end{cases}$$

Ammette una soluzione $y = \varphi(x)$ tale che $\varphi(2) = (e^{-4} - e^{-2})/4$.

Ammette un'unica soluzione definita al più su $[0, +\infty]$.

3.A Solo la seconda.

Nessuna delle altre affermazioni è esatta 3.B

3.C Solo la prima.

Entrambe. 3.D

A.A. 14/15 - Scritto n. 1

 $\mathbf{A.0}$

- **4.** Sia $f_n: \mathbf{R} \to \mathbf{R}$ data da $f_n(x) = \frac{3nx}{4n^2 + 5x^2} + \arccos \frac{x^2}{n + 3x^2}$. Quale/i delle seguenti affermazioni è/sono certamente
 - f_n converge uniformemente sui sottoinsiemi limitati di ${\bf R}.$ (1)
 - (2) f_n converge puntualmente su \mathbf{R} .

4.A Entrambe.

Solo la seconda. 4.B

4.C Nessuna delle altre affermazioni è esatta

Solo la prima. 4.D

5.
$$Sia\ f: \mathbf{R}^2 \to \mathbf{R}\ data\ da\ f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{2x^2 + 5y^2} & se\ y \le x\ e\ (x,y) \ne (0,0) \\ 0 & se\ (x,y) = (0,0) \\ \frac{x^2y}{3x^2 + 4y^2} & se\ y > x \end{cases}$$
. Quale/i delle seguenti affermazioni

è/sono certamente vera/e?

(1)
$$f \in \mathbf{C^0}(\mathbf{R}^2; \mathbf{R})$$

- (2) $f \ \hat{e} \ differenziabile \ in \ (0,0)$
- **5.A** Nessuna delle altre affermazioni è esatta

Solo la prima. 5.B

Solo la seconda.

Entrambe.

- **6.** Sia $f: A \to \mathbf{R}$ dove $A = [1/2, 3] \times [1, 2]$ e $f(x, y) = \int_1^y \left(\frac{e^{2xt}}{t} + x\right) dt$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1)f ammette un unico punto di massimo.
 - f ammette un unico punto di minimo. (2)
- Nessuna delle altre affermazioni è esatta

Entrambe. **6.B**

Solo la prima.

Solo la seconda.

7. L'equazione $x e^y - 2y + 1 = 0$ definisce in un intorno di (0, 1/2) implicitamente una funzione $y = \varphi(x)$ tale che, per $x \to 0$,

7.A
$$\varphi(x) = \frac{1}{2} - \frac{\sqrt{e}}{2}x - \frac{e-2\sqrt{e}}{8}x^2 + o(x^2).$$

7.C $\varphi(x) = \frac{1}{2} + \frac{\sqrt{e}}{2}x + \frac{e-2\sqrt{e}}{8}x^2 + o(x^2).$

$$\varphi(x) = \frac{1}{2} + \frac{\sqrt{e}}{2}x + \frac{e}{4}x^2 + o(x^2). \quad \textbf{7.B}$$
 Nessuna delle altre affermazioni è esatta **7.D**

7.C
$$\varphi(x) = \frac{1}{2} + \frac{\sqrt{e}}{2}x + \frac{e-2\sqrt{e}}{8}x^2 + o(x^2)$$

8. Sia T il triangolo di vertici (0,0), (7,0) e (7,7). Sia C la circonferenza di centro (0,0) e raggio 2. Allora, $\int \int_{T \cap C} \left(\frac{1}{\sqrt{x^2 + y^2 + 1}} \right)^3 dx \, dy =$

$$\int \int_{T \cap C} \left(\frac{1}{\sqrt{x^2 + y^2 + 1}} \right)$$
8.A
$$\left(1 - \frac{1}{\sqrt{10}} \right) \frac{\pi}{4}$$

Nessuna delle altre affermazioni è esatta 8.B

8.C
$$\left(1 - \frac{1}{\sqrt{5}}\right) \frac{\pi}{4}$$

$$\left(1 - \frac{1}{\sqrt{2}}\right) \frac{\pi}{4} \quad \mathbf{8.D}$$

Analisi Matematica 2- Ingegneria Elettronica e delle Telecomunicazioni Facoltà di Ingegneria, Brescia, A.A. 14/15- Scritto n. 1

Risposte esatte:

1 2 3 4 5 6 7 8 9 0

Compito A: B B C A A C B C