Analisi Matematica 2

Facoltà di Ingegneria, Brescia, A.A. 07/07 - Quarto Scritto

Matricola:	
Cognome: Nome	::
Domanda: 1 2 3 4	5 6 7 8
Risposta:	
Per ognuna delle 8 domande sono suggerite 4 risposte. Una sola è esatta. Per ogni risposta esatta, vengono assegnati 4 punti. Per ogni risposta sbagliata -1/2. Per ogni risposta non data -1/4.	
1. Sia $\alpha \in \mathbf{R}$. La funzione $f: \mathbf{R}^2 \mapsto \mathbf{R}$ data da $f(x,y) = \begin{cases} \frac{(3x)^2}{2} \\ 0 \end{cases}$ differenziabile su \mathbf{R}^2 se e solo se	$\frac{(x,y)^{2} + 2y^{2})^{\alpha} \ln(1 + 2x^{2} + 3y^{2})}{\sinh(x^{2} + 3y^{2})} (x,y) \neq (0,0)$ $(x,y) = (0,0)$
1.A $\alpha < 1$ 1.C $\alpha > 0$	$\alpha > 1/2 \textbf{1.B}$ nessuna delle altre affermazioni è esatta $ \textbf{1.D}$
2. La soluzione del problema di Cauchy $\begin{cases} y' - 4xy = x^3 \\ y(0) = -1/8 \end{cases}$ 2.A ammette almeno un punto di flesso 2.C è crescente	nessuna delle altre affermazioni è esatta ${\bf 2.B}$ è dispari ${\bf 2.D}$
3. Sia $f \in \mathbf{C^1}(\mathbf{R}^2; \mathbf{R})$ una funzione tale che per ogni $(x, y) \in \mathbf{R}^2$, $\ \nabla f(x, y)\ \ge 5$ e inoltre $\nabla f(x, y)$ è parallelo al vettore $5\mathbf{i} + 2\mathbf{j}$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?	
 f ristretta alla circonferenza di centro (5,2) e raggio 5 ammette un unico punto di massimo f ristretta alla circonferenza di centro (5,2) e raggio 5 ammette un unico punto di minimo 	
3.A nessuna 3.C solo la (1)	solo la (2) 3.B entrambe 3.D
4. Siano $\alpha, \beta \in \mathbf{R}$. La serie $\sum_{n=1}^{+\infty} \left(\frac{\arctan\left(1 + \ln(1 + 5x^2 + n^2)\right)}{(2n + \cos x)^{4\alpha - 1}} \right)$	$+\frac{n^{\beta}}{5^n}\chi_{[-5,5]}(x)$ $\left(\chi_{[-5,5]}\ \dot{e}\ la\ funzione\ carat-$
teristica di $[-5,5]$) converge totalmente su $\mathbf R$ se e solo se 4.A $\alpha > 0$ e $\beta > 1/5$ 4.C nessuna delle altre affermazioni è esatta	$lpha > 1/2 ext{ e } eta \in \mathbf{R}$ 4.B $lpha > 1/2 ext{ e } eta < 0$ 4.D
5. Sia $A = \{(x, y) \in \mathbf{R}^2 : x \in [0, \ln 3] \ e \ y \in [1, (2e)] \}$. Allora $\iint_A dx = \{(x, y) \in \mathbf{R}^2 : x \in [0, \ln 3] \ e \ y \in [1, (2e)] \}$	$\frac{2y}{1+e^{2x}} dx dy =$
5.A $\frac{(2e)^2-1}{2}(\ln 9 + \ln 5)$	nessuna delle altre affermazioni è esatta $$ 5.B

5.C
$$\frac{(2e)^2 - 1}{2} (2 \ln 3 - \ln 5)$$
 5.D

6. Sia $s(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$ la funzione segno. Sia A l'insieme degli x_o in \mathbf{R} per cui il Problema di Cauchy

 $\begin{cases} \dot{x} = s(x) \\ x(7) = x_o \end{cases} \ ammette \ un'unica \ soluzione \ su \ [7, +\infty[. \ Allora:$

6.A
$$A = \mathbf{R} \setminus \{0\}$$

6.C $A = \{0\}$

nessuna delle altre affermazioni è esatta 6.B

$$A = \emptyset$$
 6.D

7. Sia (X,d) uno spazio metrico e x_n una successione di elementi di X. Quale/i delle seguenti affermazioni è/sono certamente vera/e?

(1) se
$$x_n$$
 è di Cauchy, allora $\lim_{n \to +\infty} d(x_n, x_{n+1}) = 0$

(2) se
$$\lim_{n \to +\infty} d(x_n, x_{n+1}) = 0$$
, allora x_n ammette limite in X

7.A solo la (1) solo la (2) **7.B** 7.C entrambe nessuna 7.D

8. Siano $\alpha \in \mathbf{R}$ con $\alpha \neq 0$, $(x_o, y_o, z_o) \in \mathbf{R}^3$ $e \ f \in \mathbf{C^2}(\mathbf{R}^3; \mathbf{R})$ tali che $\nabla f(x_o, y_o, z_o) = 0$ $e \ H_f(x_o, y_o, z_o) = 0$ $1 + \alpha$, per un dato $(x_o, y_o, z_o) \in \mathbb{R}^3$. Allora è necessariamente vero che:

- 8.A nessuna delle altre affermazioni è esatta
- **8.B** $\alpha > 5 \Rightarrow (x_o, y_o, z_o)$ è punto di minimo relativo
- **8.C** $\alpha \geq 2 \Rightarrow (x_o, y_o, z_o)$ è punto di massimo relativo
- **8.D** $\alpha \leq -2 \Rightarrow (x_o, y_o, z_o)$ è punto di massimo relativo

${\bf Analisi~Matematica~2} \\ {\bf Facoltà~di~Ingegneria,~Brescia,~A.A.~07/07~-~Quarto~Scritto}$

Risposte esatte:

1 2 3 4 5 6 7 8

Compito A: B B D B C B A B