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We contribute a negative answer to the question raised by J.-M. Coron in
[1] concerning controllability of non-zero constant states C 6= 0 for the viscous
Burgers equation in a box:
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= uxx in (0, 1)× (0, T ). (BE)

Question: Does there exist u ∈ L2((0, 1)× (0, T )) satisfying (BE)
such that for all x ∈ (0, 1), u(·, 0) = 0 and u(·, T ) = C ?

(Q)

Several positive answers, for couples (C, T ) satisfying among other assumptions
|C|T > 1, were obtained, e.g., via the Hopf-Cole reduction to the heat equation.

Based on the elementary observation that states with C 6= 0, |C|T ≤ 1 are
not attainable for the inviscid Burgers equation in the classical Kruzhkov en-
tropy solution setting, we combine scaling and vanishing viscosity techniques to
show that for (BE), the non-attainability persists for large |C| and accordingly
small T , under the additional “limited amplification” constraint ‖u‖∞ ≤ LC
(L ≥ 1 being fixed). More general data can be addressed with the same method.

To get closer to the setting of (Q), we develop a theory of L2 (“unbounded”)
entropy solutions to the Burgers equation, in the Cauchy and Cauchy-Dirichlet
setting; the above non-controllability result for (BE) is partly transferred to
solutions satisfying the L2 amplification assumption ‖u‖2 ≤ LT |C|.

As a byproduct, we contribute an extension of classical Kruzhkov / Bardos-
LeRoux-Nédélec theories to unbounded entropy solutions of critical integrability
(ensuring that the flux belongs to L1) for multidimensional scalar conservation
laws, avoiding the technicalities of the general renormalization approach ([2]).
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