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of competitive exclusion where the fittest 
trait survives and all other traits go to 
extinction. However, from a mathematical 
point of view it is clear that this Dirac limit 

a
b

q2
1 d * is not an element of the state space 

considered in [1] which is ( )C Q  but is an 
element of the more natural space for for-
mulating this model which is the space of 
finite signed measure ( )M Q . Indeed, the 
authors in [2] reformulated a more general 
model which includes (1) as a special case 
on the space of finite signed measures.

Shepherd dogs and fairy tales
A recurrent intriguing question is: how can 
a leader drive a multitude towards a given 
goal?

With respect to the multitude, the 
leader can be attractive or repulsive, for 
instance. It is easy to refer to these two 
sample cases respectively as to the pied 
piper that attracts mice (e.g. De rattenvan-
ger van Hamelen, see [9] ) or to a shepherd 
dog herding sheep. On this basis, a variety 
of new control problems can be formal-
ized. Can we characterize the best strategy 
for the leader? Clearly, here best may mean 
fastest, or cheapest, or simplest, or ...

Further questions arise when we start 
thinking at a team of leaders cooperating 

scribes the growth rate and q2 describes the 
mortality rate. This model implies that indi-
viduals with trait q produce individuals with 
the same trait (i.e., pure selection) and that 
individuals compete for resources since the 
mortality term is dependent on the level 
of the total population ( ) ( , )X t x t q dq

Q
= # . 

By letting q* be the unique trait value at-
taining / /max q q b aq Q 1 2 1 2=!  and using 
the Lyapunov function ( ) ( , )L t x t q /q1 1=  
/ ( , )x t q /q1 1

**  one can show that ( )L tdt
d = 

( / / ) ( ) ( )q q q q X t L t2 1 2 1-** . Since, ( / / )q q q q2 1 2 1-* *  
0< , establishing boundedness of ( )X t , 

one can deduce that for any f radius 
ball in Q centered at q* denoted by Bf, 

( , )x t q dq 0
/Q B

"
e

# , as t " 3. Using this 
result one can show that ( , )x t q a

b
q2

1" d * 
in the weak* topology. Biologically this 
implies that the fittest trait is q* and the 
long term dynamics of this model is that 

Having in mind the use of measures as key 
modeling tool, workshop participants con-
sidered a wide variety of applications: from 
structured population models, to selec-
tion-mutation models, to vehicular/traffic 
traffic flows, to balance equations, to prob-
ability, ...

A selection model
Let us begin with a simple model studied 
two decades ago by Ackleh et al. in [1]. 
Therein, the authors consider the integro- 
differential equation on the state space of 
continuous functions:

( , ) ( , ) [ ( )] .dt
d x t q x t q q q X t1 2= - (1)

Here, ( , )x t q  is the density of individuals hav-
ing trait ( , ) [ , ] [ , ]q q q Q a b a b1 2 1 1 2 2#!= =  a 
rectangle in the interior of R2

+, where q1 de-
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route ABC to route ADC. Then, the new 
travel times become

,
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showing that this change of mind is not 
convenient for our commuter.

Due to the intensive use of this net-
work, a new road is now built connecting 
B to D. This brand new road allows for 
infinite speed, so that commuters reach D 
from B in time 0. See Figure 3. Now, to go 
from A to C three choices are available: 
ABC, ABDC and ADC. How will commut-
ers distribute among these three different 
routes? In other words, is there a new Nash 
equilibrium? And which is it?

A moments’ thought reveals that if x 
commuters travel along ABC, y along 
ABDC and z along ADC, then the three 
travel times are

.

x y

x y y z

y z

ABC AB BC 100 45

ABDC AB BD DC 100 0 100

ADC AD DC 45 100

= + =
+

+

= + + =
+

+ +
+

= + = +
+

The equality of the travel times yields 
x y y z 4500+ = + = , which is inconsistent 
with the total number of commuters be-
ing x y z 4000+ + = . Thus, no equilibrium  
exists when all routes are used. (Here, an 
equilibrium configuration is a distribution 
of drivers yielding the same travel time 
along all used routes, see for instance [6].)

A reasonable guess is now that the Nash 
equilibrium prior to the construction of BD 
still is a Nash equilibrium in presence of 
BD. But it is not the case because it is con-
venient for a driver to pass from, say, route 
ABC to route ABDC. Indeed, the travel 
time corresponding to x 2000= , y 0=  and 
z 2000=  is 65 along both routes ABC and 
ADC. On the other side, setting x 1999= , 
y 1=  and z 2000=  results in the travel 
times

ABC 65, ABDC 40.01, ADC 65.01.= = =

Thus, we imagine that as soon as BD 
is opened to commuters, they find conve-
nient to use it. As more and more commut-
ers drive along the new route ABDC, the 
corresponding travel time increases, but 
remains lower than those along ABC and 
ADC. Thus, the new Nash equilibrium cor-
responds to all commuters driving along 
ABDC, that is x 0= , y 4000=  and z 0= . 

along a single road, displaying surprising 
properties.

Cities A and C are connected by two 
roads that pass through city B (here and 
in what follows all roads are one way). The 
travel time along AB depends on traffic, 
say it equals the number of vehicles trav-
eling along that road divided by 100. On 
the contrary, the road from B to C is so 
wide that the travel time along this seg-
ment is 45, regardless of traffic. See Figure 
1. Clearly, if 4000 commuters need to go 
from A to C every day, their travel time is 

45 85100
4000 + = .

New roads are build, so that A is con-
nected to C also through D. To ease com-
putations, we assume that the road AD 
has the same travel time as that between 
B and C, while the road DC is identical to 
AB. See Figure 2. How will our 4000 com-
muters distribute between the two routes? 
Clearly, the evident symmetry between 
ABC and ADC suggests that half will go 
through B and half through D. The result-
ing travel times are 
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Note that this configuration is an example 
of a Nash equilibrium. Indeed, look at each 
driver as to a player, whose objective is to 
minimize his/her travel time. Imagine that 
one of the commuters passes from using 

towards the same goal. How much are 2 
shepherd dogs more efficient than only 
one? Does there exist an optimal number 
of pied pipers to gather mice in a given 
region?

The next step is even more intriguing. 
Indeed, we may pass from a control prob-
lem, where one goal has to be achieved, to 
a game, where different goals are sought 
by different (teams of ) competing leaders. 
Does there exist a winning strategy? Can 
we characterize Nash [12] equilibria? (These 
are strategies that each controller adopts 
because other choices would be less con-
venient, see also [6].)

When we get to the formalization of 
these problems, we find an exciting wealth 
of tools that mathematics offers to describe 
these situations. During the meeting at the 
Lorentz center, focus was mostly on de-
scriptions based on conservation laws. Call 

( , )t xt t=  the time (t) and space (x) de-
pendent density of individuals, think at t 
as at the number of mice/sheep per square 
meter. Let ( ), , ( )P t P tn1 f  be the time de-
pendent positions of the pipers/shepherd 
dogs and describe the pipers-mice or 
dogs-sheep interactions through the speed 

( , , , , , )v v t x P Pn1 ft= . We thus describe the 
whole dynamics through the continuity 
equation

( , , , , , )div v t x P P 0t n1 f2 t t t+ =^ h
while the controls or strategies are the 
speeds , ,u un1 f  of the leaders, so that 

( ) ( ) ,P t P u d u Uwithi i
o

i

t

i

0

#x x= + #

U being the maximal leaders’ speed and 
Pi

o the initial position.
Basic well posedness and stability re-

sults for the resulting problem were ob-
tained in [7]. The goals of the leaders can 
be easily formalized through suitable inte-
grals of t.

At the time of this writing, the existence 
and the characterization of optimal con-
trols is an open problem, as also any infor-
mation on Nash equilibria. We expect that 
these questions have to be answered prior 
to suggesting optimal escape strategies to 
mice and sheep ...

Nash and Braess close roads
The Braess Paradox, see [4] is a famous 
example, showing that the dynamics on 
networks can significantly differ from that 
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Model (2), (3) is able to display not only 
Braess paradox but also lane formation [5]. 
Indeed, Figure 4 shows the movement of 
a crowd. Initially, individuals are uniformly 
distributed in the rectangle above. At time 
t 0= , they move to the right, the ones 
in front being faster. Without any ad hoc 
prescription, individuals form five lanes of 
higher density (see [5] for details about the 
numerical integration). s
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Indeed, even if the presence of obstacles 
may be seen as leading to a worse con-
dition, it may reduce the inter-pedestrian 
pressure near the exit and prevents it from 
blocking. This effect opens interesting per-
spectives for safety and efficient evacua-
tion of buildings and other confined en-
vironments. It is thus of great importance 
to develop mathematical models capable 
to describe these phenomena. In this per-
spective, various studies [13] showed that 
models based on the classical mass con-
servation equation

( ) ,div V 0t2 t t t n+ =v^ h (2)

where nv is the vector field of the trajec-
tories followed by pedestrians (possibly 
dependent on the density distribution 
through an eikonal equation), are not able 
to capture this behavior. One needs either 
to add a momentum balance equation de-
scribing acceleration, or to account for in-
ter-pedestrian interactions through non-lo-
cal terms. In the latter case, the velocity 
vector field is given in the form

( , ) ( )
( )

,t x v x
1 2)

)d
n f

t h

t h
= -

+
v v (3)

where vv is the vector field of the preferred 
path, for example the shortest to desti-
nation, tempered by the latter non-local 
term, which pushes pedestrians towards 
low density regions through the action of 
a suitable positive mollifier h (here )t h is 
the usual convolution product), accounting 
for the local density distribution.

Here comes the paradox: the new travel 
time is 0 80100

4000
100
4000+ + = ! It is higher 

than prior to the construction of BD!
In other words, adding a road to a net-

work may make the network less efficient, 
even if the new road is, by itself, extremely 
efficient (our BD segment is traveled at in-
finite speed!).

This remark is clearly counter-intuitive, 
paradoxical, but it is real. Here, we refer to 
the famous closing of 22nd street in New 
York that took place on 22 April 1990, see 
[11], and to [3]. The reader is invited to 
personally search for other real examples.

The literature on Braess paradox [4] is 
vast and currently comprises a variety of 
phenomena not necessarily related to traf-
fic on road networks. During the meeting 
at the Lorentz center, some discussions 
centered about the possibility that PDE 
based macroscopic models are able to cap-
ture this paradox. A first result in this con-
nection is [6], but several questions remain 
unanswered. For instance, can the dynam-
ics of PDE describe the insurgence of a 
Braess-like regime in a network? It goes 
without saying that this descriptive ability 
is preliminary to tackling optimal manage-
ment problems.

A somewhat inverse Braess paradox is re-
ported to happen in flocks of sheep passing 
through narrow gates [8], see also https:// 
www.youtube.com/watch?v=mkqhYhdgvGg. 
Similarly, Hughes [10] suggested that an 
obstacle, suitably placed in front of an 
exit, may increase the through flow of pe-
destrians, thus reducing evacuation time. 

Figure 4
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