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Abstract. Consider a control problem based on a balance law, where a given
cost, say an integral functional, needs to be minimized. Once suitable well posedness
results are available, the existence of optimal controls easily follows. This presentation
overviews several examples of this problem.
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1. Introduction. This presentation is devoted to control problems of
the type: maximize J (u) where u solves











∂tu+ divx f(t, x, u) = g(t, x, u) (t, x) ∈ R
+ × Ω

b
(

u(t, x)
)

= ψ(t) (t, x) ∈ R
+ × ∂Ω

u(0, x) = ū(x) x ∈ Ω .
(1.1)

J is an integral functional, the flow f and the source term g are sufficiently
smooth, Ω ⊆ R

N and u ∈ R
n. The examples below show that control

parameters may enter f , g, ψ or ū. As it is well known, a basic analytical
theory for (1.1) is available only when the number n of equations and the
space dimension N are in one of the two cases

n ≥ 1 and N = 1 or n = 1 and N ≥ 1 .

2. The Case of Junctions. Note preliminarily that, when N = 1,
the general setting of (1.1) comprises also the case of junctions. Consider
for instance a traffic light, say sited at x = 0, separating an incoming road,
x < 0, from the outgoing one, x > 0. Then, the traffic densities u1, before
the traffic light, and u2, after it, can be assumed to solve the following
conservation law at a junction:











∂tui + ∂xfi(ui) = 0 (t, x) ∈ R
+ × R, i = 1, 2

Ψ
(

u1(t, 0−), u2(t, 0+)
)

= ψ(t) t ∈ R
+

u(0, x) = ū(x) x ∈ R

(2.1)

where f is the traffic flow, see [36, 53]. The condition Ψ at the junction
prescribes the conservation of vehicles as well as other conditions, such as
priority rules or the maximization of the junction efficiency, see [53]. The
framework of (2.1) comprises also other situations. For instance, u1 might
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be the vector of the densities of mass and linear momentum of a fluid in
a pipe entering a junction or an elbow, sited at x = 0, while u2 is the
analogous vector for the fluid in the pipe exiting the junction, with f being
the flow of the p-system, see for instance [33, formula (1.1)] or [31, 32, 58].
A key role is played by the choice of the condition Ψ: depending on the
specific problem under consideration, it constrains the solution to (2.1) to
satisfy specific conditions. In the case of fluid dynamics, Ψ ensures the
conservation of mass and that of a component of the linear momentum,
see [10, 11, 31, 32, 33], or it may also describe the effect of a compressor at
x = 0, see [40, 43].

Problem (2.1) is equivalent to (1.1) with N = 1, Ω = R
+, g = 0,

u = (u1, u2), f = (f1, f2) and b(u) = Ψ(u1, u2), see [40, Proposition 4.2].
More general junctions can be treated similarly, as well as general networks
with arcs of finite length. Below, we indifferently refer to initial–boundary
value problems like (1.1) or to problems at junctions, like (2.1).

3. Examples based on the p-system. Consider a fluid flowing in
pipes with constant sections having a common origin at a junction or at
an elbow, for instance as one of the three below. In the isentropic, or
isothermal, approximation the flow along each pipe is described through
the p-system:

{

∂tρi + ∂xqi = 0
∂tqi + ∂xP (ρi, qi) = 0

P (ρ, q) =
q2

ρ
+ p(ρ)

(3.1)

where (ρi, qi) are the density of mass and of linear momentum in the i-th
pipe. The pressure is assumed to satisfy standard assumptions, such as [33,
(P)], typically satisfied by the usual γ-law p(ρ) = k ργ . Remark that qi
is the component of the linear momentum density along the axis of the
i-th pipe, so that part of the geometry of the junction can be recovered
in (3.1). However, the flow of gas in junctions such as those above is
clearly an intrinsically 3D phenomenon. Nevertheless, providing a good
1D description may significantly shorten numerical integrations. Besides,
a full analytical treatment of the p-system in 3D is now not available.

Physically, the core of the present 1D description lies in the choice of
the condition to be imposed on the traces at the junction of the solutions
to (3.1), namely

Ψ
(

(ρ1, q1)(t, 0−); (ρ2, q2)(t, 0+)
)

= 0 .

Here, Ψ: (R+ ×R)2 → R
2 is sufficiently smooth. The first component of Ψ

ensures the conservation of mass, i.e. Ψ1

(

(ρ1, q1); (ρ2, q2)
)

= a1q1 − a2q2,
ai being the section of the i-th tube. We collect some of the choices found
in the current literature for the case of 2 pipes in the table below, from [34],
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where qualitative properties of the solutions to (3.1) with different condi-
tions at the junction are compared.

Ψ2 Meaning
a1P (ρ1, q1) − a2P (ρ2, q2) Partial conservation of linear mo-

mentum, see [32]
p(ρr) − p(ρl) Equal pressure, typically justified at

the static equilibrium, see [10, 11]
P (ρ1, q1) − P (ρ2, q2) Equal dynamic pressure, see [31, 33]
a1P (ρ1, q1) − a2P (ρ2, q2)+

+

∫ a2

a1

p
(

R(α; ρl, ql)
)

dα

For two parallel pipes, limit of the
condition for smooth variations of
the pipes’ sections, see [45, 55].

We refer also to [58] for a treatment specific of kinks and to [46, 44] for the
full 3 × 3 system of Euler equations. Above, R is the ρ component of the
stationary solution to (3.1), see [34] or [45, Proposition 2.7].

The above structure is relevant from the application point of view,
due to its applicability to gas networks and pipelines, see for instance [56,
66, 67, 68, 72]. We consider now in more detail a compressor sited at a
junction joining two pipes. Its role is, for example, to pump the fluid up
along an inclined pipe as in the figure below.

{

∂tρi + ∂xqi = 0

∂tqi + ∂xPi = −νqi|qi|
ρi

− ρig sinαi

Pi =
(qi)

2

ρi
+ p(ρi)

flow

x1

x2

α1

α2

Tube 1

Tube 2

Here, αi is the slope of the pipe, ν accounts for friction along the pipe’s
walls and g is gravity.

As a condition at the junction, a typical choice is that in [72, § 2.2]:

q2(t, 0+)





(

p
(

ρ2(t, 0+)
)

p
(

ρ1(t, 0+)
)

)(γ−1)/γ

− 1



 = Π(t)

where the control Π is the power exerted from the compressor. A reasonable
lower semicontinuous cost functional on the time interval [0, T ] is then

J (Π) = TV
(

Π; [0, T ]
)

+ ‖Π‖
L∞([0,T ];R) +

∫ T

0

∫ b

a

∣

∣p(ρ2(t, x; Π) − p̄
∣

∣dxdt

where p̄ is the desired gas pressure along the stretch [a, b] of the second pipe.
Here, as usual, TV

(

Π; [0, T ]
)

denotes the total variation of the function Π
over the time interval [0, T ]. The first two terms in the right hand side
above tend to penalize variations in the compressor power and to minimize
its consumption, see [40, 43].

Along a river or a canal, an underflow gate as in the figure below can
also be described by the p-system, see [51]:
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{

∂tHi + ∂xQi = 0

∂tQi + ∂xPi = −νQi|Qi|
Hi

−Hig sinαi

Pi = (Qi)
2/Hi + (g/2)(Hi)

2

H1
H2u

Here, Hi is the height of water in the i-th part of the canal; g, ν and αi are
as above. The system is controlled through u, which is the height of the
opening in the gate.

The condition at the junction consists of an equation for the conser-
vation of water together with

(

H1(t, 0−) −H2(t, 0+)
)

u(t) =
(

Q1(t, 0−)
)2
.

Typically, one wants to minimize variations in the water level downstream
the gate while ensuring a suitable through flow Q̄. Therefore, a reasonable
cost functional is

J (u) =

∫ T

0

∫ b

a

∣

∣Q2(t, x;u) − Q̄
∣

∣ dxdt+

∫ T

0

∫

R+

w(x)|∂xH2| .

Above, |∂xH2| is the measure theoretic total variation of the space deriva-
tive of H2 and w ∈ C∞

c
(R+; R+) is a suitable weight. The cost J is lower

semicontinuous as a function of the solution (H,Q), see [37, Lemma 2.1
and Theorem 2.2].

Several other applications of 1D systems of conservation laws are found
in the literature. We refer to [21] for a model related to blood flow; to [9, 13,
25, 36] for traffic flow models and to [53] for the treatment of road networks;
to [3, 4, 41, 57, 70] for systems describing the movement of granular matter.
A wide literature is concerned with the propagation of phase boundaries in
fluids, see for instance [1, 26, 64, 71, 74]. In this context, the continuous
dependence from the kinetic relation was proved in [29]. This structure also
applies to detonation and deflagration phenomena, see for instance [27, 75].

In the case N = 1 and n ≥ 1, the existence of an optimal control in the
examples above readily follows, as soon as the solution to (1.1) is proved
to depend continuously from the various control parameters. The global in
time existence of BV solutions to 1D hyperbolic systems of conservation
laws was proved in [54].

The L1 Lipschitz continuous dependence of the solution from the initial
data was proved in the 2×2 case in [18] and in the general case in [14, 19, 20],
see also [17, 50].

The L1 Lipschitz continuous dependence of the solutions from the L1

distance between boundary data and from the C0 distance between the
boundary profiles was obtained in the 2 × 2 case in [2]. In the case of a
non-characteristic boundary, this result was extended to the n × n case
in [39, 52]. The case of junctions was specifically investigated in [40, 43].
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In the case of general hyperbolic conservation laws generating Stan-
dard Riemann Semigroups [17, Definition 9.1], the L1 Lipschitz dependence
of the solutions from the C0 distance between the Jacobians of the flows
was obtained in [15].

Most of the above results rely on proving suitable estimates, first on
approximate solutions and then passing to the limit. Wave Front Tracking
proved to be a very effective procedure to construct approximate solutions
to conservation laws, see [17, 50, 59]. Other tools are Glimm scheme,
see [54], and vanishing viscosity, see [14]. To pass to balance laws, a stan-
dard strategy is based on operator splitting, see [38, § 3.3] or [23, 28, 73]. A
general framework that allows to comprise problems with local/non-local
sources and/or boundary and/or junctions is in [38, § 3.1] and [39].

4. 1D Conservation Laws with Unilateral Constraints. The
traffic flow along a rectilinear one-way road is often described through the
Lighthill-Whitham [65] and Richards [69] model

∂tρ+ ∂xf(ρ) = 0 f(ρ) = ρ v(ρ) ,

where the traffic speed v is assumed to be a known function of the traffic
density ρ. A typical choice can be v(ρ) = V ·

(

1 − ρ/R
)

, V being the
maximal speed and R the maximal density, see also [35, (R1)] for a more
general condition on the flow f .

The effect of a toll gate sited at, say, xr is to limit the flow of traffic
below a threshold qr = qr(t). We thus obtain the Cauchy problem











∂tρ+ ∂xf(ρ) = 0
ρ(0, x) = ρ̄(x)
f
(

ρ(t, xr)
)

≤ qr(t)

f(ρ) = V ρ (1 − ρ/R)

where the (x, t) diagram above on the right corresponds to xr = 0, ρ̄ =
χ

[−0.7,−0.1]
, R = 1 and V = 1. From the traffic point of view, it is more real-

istic to consider the initial boundary value problem with both the inflow and
the constraint qr periodic in time. We thus obtain the following situation:



















∂tρ+ ∂xf(ρ) = 0
ρ(0, x) = 0
f
(

ρ(t, 0)
)

= qo(t)
f
(

ρ(t, xr)
)

≤ qr(t)

f(ρ) = V ρ (1 − ρ/R)

Here, both qo and qr vary between 0 and the maximal flow 1/4.
The basic analytical issues concerning the well posedness of these prob-

lems are solved in [6, 35]. Various control problems can now be posed, such
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as minimizing the travel time, see [5] or the variations in the traffic speed,
see [37]. Furthermore, assume that road constructions hinder the flow of
traffic at xc, with xc > xr, see the figure below. Then, describing the ef-
fects of the road construction by means of a further unilateral constraint,
we are lead to


























∂tρ+ ∂xf(ρ) = 0
ρ(0, x) = 0
f
(

ρ(t, 0)
)

= qo(t)
f
(

ρ(t, xr)
)

≤ qr(t)
f
(

ρ(t, xc)
)

≤ qc

f(ρ) = V ρ (1 − ρ/R)

��
��
��
��
��

��
��
��
��
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0 xr xc

An analytical and numerical study of this problem is in [36].
In the study of scalar conservation laws with unilateral constraints, a

suitable mixture of Kružkov technique, see [63], with wave front tracking,
see [17, 49, 50], proved to be effective, see [6, 35, 36].

5. MultiD Scalar Conservation Laws. A natural application of
scalar conservation laws in 2D is provided by the modeling of crowd dy-
namics, see [24, 30, 60, 61]. In this case, ρ is the pedestrian density, which
is assumed to solve a conservation law of the type, for instance,



















∂tρ+ div f(x, ρ) = 0 (t, x) ∈ R
+ × Ω

ρ(0, x) = ρ̄(x) x ∈ Ω
f
(

x, ρ(t, x)
)

· ν(x) = ψ(t) (t, x) ∈ R
+ ×D

f
(

x, ρ(t, x)
)

· ν(x) = 0 (t, x) ∈ R
+ ×W

(5.1)

with Ω ⊆ R
2, ν(x) is the interior normal to ∂ω at x, D ⊆ ∂Ω is the door

and W ⊆ ∂Ω is the wall, with D∪W = ∂Ω and D∩W = ∅. ψ(t) is the flow
of people entering Ω at time t. Note however that a unilateral constraint
f
(

x, ρ(t, x)
)

·ν(x) ≤ ψ(t) might often be more suitable, in particular in the
case of people exiting Ω.

Problems of this type apparently received little attention from the
mathematical community. In the case of the Cauchy problem

{

∂tρ+ div f(x, ρ) = 0
ρ(0, x) = ρ̄(x)

the existence of solutions, as well as the fact that the resulting semigroup
is non expansive in L1, was proved in the classical paper by Kružkov [63],
whereas the case of bounded domains was dealt with in [12]. However,
the stability of solutions with respect to the flow was proved only recently
in [47]. Other results in the literature provided similar estimates in the
case of particular flows, for instance f(x, ρ) = a(x) b(ρ), or required a

priori bounds on the total variation of the solution, see [16, 22, 62].
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Recent results in this direction considers the case N ≥ 1 and n =
1 of (1.1) with a nonlocal flow, see [42, 48]. This case is motivated by
examples from pedestrian dynamics, see [42, § 4], as well as supply chain
management, see [7, 8]. In [42, Theorem 2.10] it is proved that the Cauchy
problem for the continuity equation

{

∂tρ+ div
(

ρ V (ρ)
)

= 0
ρ(0, x) = ρo(x)

(5.2)

with V :L1 7→ C2 being a nonlocal operator, generates a semigroup S in
the sense that t 7→ Stρo is the solution to (5.2). Under strong regularity
assumptions on v, [42, Theorem 2.10] proves that St is differentiable with
respect to ρo and that its derivative computed at ρo in the direction r is
characterized by

(

DSt(ρo)
)

r = Σρo

t r. Here Σρo is the semigroup generated
by the linearized equation







∂tr + div
(

r V (ρ) + ρ
(

DV (ρ)
)

(r)
)

= 0

r(0, x) = ro .

A necessary condition for the optimal control of integral functionals then
follows. In [48] another existence result is proved by means also of L2

techniques.

6. Open Problems. It is clear from the above presentation that sev-
eral issues, to the present knowledge of the author, are still unanswered.

Concerning the dependence of the solution to (1.1) from the various
quantities appearing therein, not all situations have been fully considered,
in particular in the case of (5.1).

Concerning optimal control problems, all the results above ensure the
existence of such a control. Finding it, either through suitable necessary
conditions or through approximate constructive procedures, is a problem
still open in many cases when non smooth solutions arise and may develop
interacting shocks. The existence of closed–loop, or feedback, controls is
also of great interest in most of the examples cited above.

Two other research areas seem worth being considered: the inverse
problem and stochastic evolutions. The former is of interest in particular in
those situations, such as traffic modeling, in which the various parameters
entering the equations are not motivated a priori from physics. The latter
seems unavoidable when trying to provide a macroscopic description of
phenomena that are inherently microscopic, an example being nucleation
in phase transitions.
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[16] F. Bouchut and B. Perthame, Kružkov’s estimates for scalar conservation laws

revisited, Trans. Amer. Math. Soc., 350 (1998), pp. 2847–2870.
[17] A. Bressan, Hyperbolic systems of conservation laws, vol. 20 of Oxford Lecture

Series in Mathematics and its Applications, Oxford University Press, Oxford,
2000. The one-dimensional Cauchy problem.

[18] A. Bressan and R. M. Colombo, The semigroup generated by 2×2 conservation

laws, Arch. Rat. Mech. Anal., 133 (1995), pp. 1–75.
[19] A. Bressan, G. Crasta, and B. Piccoli, Well-posedness of the Cauchy problem

for n× n systems of conservation laws, Mem. Amer. Math. Soc., 146 (2000).
[20] A. Bressan, T.-P. Liu, and T. Yang, L1 stability estimates for n×n conservation

laws, Arch. Rat. Mech. Anal., 149 (1999), pp. 1–22.
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