Analisi Matematica 2 - Ingegneria Elettronica e delle Telecomunicazioni Facoltà di Ingegneria, Brescia, A.A. 22/23 - Scritto n. 2

Matricola:										
Cognome:				N	ome:					
Domanda:	1	2	3	4	5	6	7	8	9	
Risposta:										
Per ognuna delle 9 doman	ide sono s	suggerite	4 rispost	e, una so	la esatta.	5 rispos	te esatte	assicura	no la suffici	enza.
1. In un intorno di (0,1 affermazioni è/sono certa			y-2y+	1 = 0 de	finisce un	na funzion	$ne y = \varphi($	x). Qua	le/i delle so	eguenti
	(1)	$\varphi(x) = 1$ (2)		$\frac{\overline{\epsilon}/2)x + (\epsilon - 2\varphi''(0))$	• •	, , -	$r x \to 0$			
1.A entrambe									solo la (1)	1.B

- 1.C solo la (2) Nessuna delle altre affermazioni è esatta. 1.D 2. È dato il Problema di Cauchy $\begin{cases} \dot{x} = \min\{2, x^3\} \\ x(0) = x_o \end{cases}$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) $\forall x_o \in \mathbf{R}$, le ipotesi del Teorema di Cauchy locale sono soddisfatte
 - (2) $\forall x_o \in \mathbf{R}$, le ipotesi del Teorema di Cauchy globale sono soddisfatte
- 2.A solo la (2)
 2.C entrambe
 solo la (1)
 2.B
 nessuna
 2.D
- 3. Sia $f_n: \mathbf{R} \to \mathbf{R}$ data da $f_n(x) = e^{nx} \operatorname{sen} x. Quale/i$ delle seguenti affermazioni è/sono certamente vera/e?
 - (1) f_n converge puntualmente ma non uniformemente su $]-\pi/2,0]$

(2)
$$\lim_{n \to \infty} \int_{-\pi/2}^{0} f_n(x) \, dx = 0$$

- 3.A entrambe
 3.B
 3.C solo la prima
 solo la seconda
 3.D
- **4.** Il punto (0,0) è per la funzione $f: \mathbf{R}^2 \to \mathbf{R}$ data da $f(x,y) = (x^2 + y^2)^2 (y x^2 \alpha)$, con $\alpha \in \mathbf{R}$, un punto di minimo locale se e solo se

$$\begin{array}{lll} \textbf{4.A} & \alpha \leq 0 \\ \textbf{4.C} & \alpha > 0 \end{array} \\ \begin{array}{lll} \alpha \geq 0 & \textbf{4.B} \\ \alpha < 0 & \textbf{4.D} \end{array}$$

5.	Sia f la funzione definita da $f(x,y) = c$	$\begin{cases} \arctan \frac{y}{x} \\ 3\pi/2 \end{cases}$	$x \neq 0$ $x = 0$	$e \ sia \ dato \ il \ versore \ v =$	$\begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} .$	Quale/i delle
sea	uenti affermazioni è/sono certamente ver	a/e?				

- f è derivabile parzialmente rispetto a y su \mathbb{R}^2 .
 - $f \ \dot{e} \ derivabile \ nella \ direzione \ v \ in (0,0).$
- **5.A** Solo la seconda.

Entrambe. 5.B

5.C Solo la prima.

Nessuna delle altre affermazioni è esatta. 5.D

6. Sia
$$A = \{(x,y) \in \mathbf{R}^2 : y \in [1,2] \ e \ x \in [1,e] \}$$
. Allora $\int \int_A 3y x^{\ln x} \frac{\ln x}{x} \, dx \, dy = 0$

6.A (9/4)(e-1)

Nessuna delle altre affermazioni è esatta.

6.C $(9/4)\pi(e-1)$

6.D

7. Si consideri il Problema di Cauchy
$$\begin{cases} y'' + 4xy' + 4e^{-2x^2} = 0 \\ y(0) = 1 \\ y'(0) = 0 \end{cases}$$
 e sia φ la soluzione massimale. Quale/i delle sequenti affermazioni è/sono certamente vera/e?

- φ è definita su tutto **R**
 - (2) $\varphi \ \dot{e} \ dispari$

7.A Entrambe

Nessuna delle altre affermazioni è esatta.

7.C Solo la prima Solo la seconda

- **8.** Siano (X,d) uno spazio metrico, $A\subseteq X$ un suo sottoinsieme non vuoto e x_n una successione di elementi di Aconvergente ad un x_{∞} in X. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1) x_{∞} è di accumulazione per A

(2)
$$x_{\infty} \in \bar{A}$$

8.A Nessuna delle altre affermazioni è esatta.

solo la prima 8.B

8.C solo la seconda

entrambe

- **9.** Sia $f: \mathbf{R}^2 \to \mathbf{R}$ data da $f(x,y) = \begin{cases} x + ye^y & \text{se } |y| > x^2 \\ x^2 + \ln\left(1 + \arctan(y^2)\right) & \text{se } |y| \le x^2 \end{cases}$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - (1)f ammette derivate parziali in (0,0)
 - f soddisfa alle ipotesi del Teorema del Differenziale Totale in (0,0)

9.A Entrambe

Solo la seconda 9.B

9.C Solo la prima

Nessuna delle altre affermazioni è esatta.

Analisi Matematica 2- Ingegneria Elettronica e delle Telecomunicazioni Facoltà di Ingegneria, Brescia, A.A. 22/23- Scritto n. 2

Risposte esatte:

1 2 3 4 5 6 7 8 9 0

Compito A: A B D D C A C C C