Analisi Matematica 2

Facoltà di Ingegneria, Brescia, A.A. 08/09 - Quinto Scritto

Matricola:							
Cognome:		 	 Nom	ne :	 	 	
	1						

Per ognuna delle 10 domande sono suggerite 4 risposte. Una sola è esatta. Per ogni risposta esatta, vengono assegnati 3 punti. Per ogni risposta sbagliata -1/4. Per ogni risposta non data 0.

- 1. Sia $f: \mathbf{R} \to \mathbf{R}$ una funzione Lipschitziana. Quale/i delle seguenti affermazioni è/sono certamente vera/e?
 - $\forall \alpha \in \mathbf{R} \ \exists x_{\alpha} \in \mathbf{R} \ unico \ tale \ che \ x_{\alpha} = \alpha f(x_{\alpha})$
 - $\exists \alpha \in \mathbf{R} \text{ per cui esiste un unico } x_{\alpha} \in \mathbf{R} \text{ tale che } x_{\alpha} = \alpha f(x_{\alpha})$
- **1.A** Solo la 1 Entrambe 1.B
- **1.C** Solo la 2 nessuna delle altre affermazioni è esatta 1.D
- **2.** Sia y = y(x) la soluzione del problema di Cauchy

$$\begin{cases} y' = (1+4y^2)x\\ y(0) = 0 \end{cases}$$

Allora il dominio massimale di y(x) è

2.C
$$]-\infty, \sqrt{\pi/2}[$$

] $-\sqrt{\pi/2}, \sqrt{\pi/2}$ [**2.B**] $-\pi, \pi$ [**2.D**

]
$$-\pi,\pi$$
[**2.D**

- 3. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x,y) = (x^2 + y^2 1)^2(\alpha^2 x^2 (y-2)^2)$ con $\alpha \in \mathbb{R}$. Nessun punto della circonferenza di centro (0,0) e raggio 1 è di massimo locale per f se e solo se
- 3.A $\forall \alpha$

 $|\alpha| > 3$ 3.B

3.C nessuna delle altre affermazioni è esatta

 $|\alpha| \ge 3$ 3.D

- Sia $x = \varphi(t)$ la soluzione massimale di $\begin{cases} \dot{x} = \sin t + t \sin(4x) \\ x(0) = 0 \end{cases}$. Allora necessariamente
- **4.A** $\varphi''(0) = 1$

nessuna delle altre affermazioni è esatta 4.B

4.C $\varphi''(0) = 0$

 $\varphi''(0) = 4$

5. Sia $f \in \mathbf{C}^1(\mathbf{R};\mathbf{R})$ 2π -periodica tale che la sua serie di Fourier è della forma $\sum_{n=3}^{\infty} \alpha_n \operatorname{sen}(nx)$. Sia la serie di Fourier associata a f^3 della forma $\sum_{n=0}^{\infty} a_n \cos(nx) + b_n \sin(nx)$. Quale/i delle seguenti affermazioni è/sono certamente vera/e?

- (1) $b_n = \alpha_n^3 \text{ per ogni } n$
- (2) $a_n = 0 \ per \ ogni \ n$

5.A entrambe solo la seconda 5.B

 ${f 5.C}$ nessuna solo la prima ${f 5.D}$

6. Sia $f \in \mathbf{C}^1(\mathbf{R}^2; \mathbf{R}^2)$ tale che f(3,1) = (0,0). In un intorno di (3,1), Quale/i delle seguenti affermazioni è/sono certamente vera/e?

- (1) $\exists \alpha \in \mathbf{R}, x \to x + \alpha f(x) \text{ soddisfa alle ipotesi del teorema della funzione inversa}$
- (2) $\forall \alpha \in \mathbf{R}, x \to x + \alpha f(x) \text{ soddisfa alle ipotesi del teorema della funzione inversa}$

6.A Entrambe Solo la 1 **6.B**

6.C nessuna delle altre affermazioni è esatta

Solo la 2 6.D

7. La distanza d_{∞} tra $f,g \in \mathbf{C^0}(D;\mathbf{R})$ con D il cerchio (chiuso) di centro (-1,0) e raggio 1 e f(x,y)=2x+2 e g(x,y)=2y vale

7.A 2

nessuna delle altre affermazioni è esatta 7.B

7.C $+\infty$

 $2\sqrt{2}$ 7.D

8. Sia $f_n: \mathbf{R} \to \mathbf{R}$ data da

$$f_n(x) = \begin{cases} -nx & -\frac{1}{n^{\alpha}} < x \le 0\\ 1 & -1 \le x \le -\frac{1}{n^{\alpha}} \end{cases}$$

 $con \alpha > 0$, e sia f il suo limite puntuale. Allora

8.A $\forall \alpha$ la convergenza è uniforme

8.B per $\alpha > 1/2$ la convergenza non è uniforme ma vale il passaggio al limite sotto il segno d'integrale

8.C per $\alpha < 1/2$ la convergenza non è uniforme ma vale il passaggio al limite sotto il segno d'integrale

8.D per $\alpha \ge 1/2$ la convergenza non è uniforme ma vale il passaggio al limite sotto il segno d'integrale

9. Sia
$$f(x,y) = \min\{y^2, x\}$$
. Allora $\int \int_{[0,1] \times [-1,1]} f(x,y) dx dy$ vale

9.A 2/3 6/5 **9.B**

9.C 7/15

nessuna delle altre affermazioni è esatta 9.1

10. Sia $f \in \mathbb{C}^2(\mathbb{R}^2; \mathbb{R})$ tale che f(1,2) = 0 e si consideri un intorno di (1,2), Quale/i delle seguenti affermazioni è/sono certamente vera/e?

- (1) $\forall \alpha \in \mathbf{R}, \ x + \alpha f(x, y) + y 3 = 0 \ soddisfa \ alle \ ipotesi \ del \ teorema \ della \ funzione \ implicita$
- (2) $\exists \alpha \in \mathbf{R}, \ x + \alpha f(x, y) + y 3 = 0 \ soddisfa \ alle \ ipotesi \ del \ teorema \ della \ funzione \ implicita$

10.A Solo la 1 Entrambe 10.B

10.C nessuna delle altre affermazioni è esatta

10.D

Solo la 2

${\bf Analisi~Matematica~2} \\ {\bf Facoltà~di~Ingegneria,~Brescia,~A.A.~08/09~-~Quinto~Scritto}$

Risposte esatte:

1 2 3 4 5 6 7 8 9 0

Compito A: C B D A B B D B C D